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144. Notes on the Existence of Certain Slit Mappings

By Masakazu SHIBA
Kyoto University

(Comm. by Kinjir6 KI.INtlGI, M. ff.A., Oct. 13, 1975)

The aim of this article is to give a new type of conformal map-
pings of plane regions bounded by finitely many analytic Jordan curves.
This is achieved by making use of a generalized Riemann-Roch theorem
shown in [8]. Also we shall mention about some immediate generali-
zations.

As is well-known, every plane region is conformally equivalent to
a parallel slit region. This theorem was carried over the case of
Riemann surfaces with positive finite genus by Kusunoki [3]. Other
types of canonical regions can be found in [1], [4]-[6] and in Koebe’s
classical works (see e.g. [2]). The image region with which we shall
deal now is of a different sort from those; it is a finite sheeted covering
surface of the extended plane whose boundary consists of slits lying
over a fixed straight line.

1. Let R be an arbitrary open Riemann surface of genus
g (=< +c) and 3R its Ker6kjrt6-Stolow ideal boundary. Denote by
P a fixed regular partition of R such that P:R--[AkJ., where
_3R. We denote by Q the canonical partition of R (see [1]). Let
/0 and A be two behavior spaces on R which are dual to each other
with respect to R (cf. [7]). Suppose that a (P)A0-divisor Ve= V(P, 2/0;
/, m) and a (Q)A-divisor V-V(Q, A; ,, n) are given. Consider the
ordered pair z/-- (Ve, V) and set 1//---=(Vq, Ve). The difference
n--m of dimensions is called the index of and is denoted by ind z/.

This definition is different from the preceding one ([8], p.15). Because
of this, in the present case we may not distinguish two functions with
a constant difference. We set (1/z)={fl(i) f is a single-valued
analytic function on R, (ii) df is a multiple of V, (iii) e fr=0 for
every r e Ve.} and -q)(A)={lw is a regular analytic differential on R
which is a multiple of Ve and satisfies [Re s,=0 for every ds e V.}.
(As for the definitions of ea fr etc., see [8].)

Now our Riemann-Roch theorem reads"
Theorem 1 ([8]). For surfaces of finite genus g,

dim q(1/A)-- dim _q)(A) ind A--2g + 2.
One can find a more general form of the Riemann-Roch theorem

in [8].
2. In this section we shall show the following theorem as an ap-
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plication of Theorem 1 above.
Theorem 2. Every plane region R bounded by l analytic Jordan

curves can be mapped conformally onto an a mos t sheeted covering
surface S of the extended plane such that the projection of each bound-
ary contour of S is a line segment lying over the imaginary axis.

An outline of the proof. Suppose that 3R==,, , being a
a contour. For each , (l<_i_<k) we can take a doubly connected
subregion U, of R such that U, is conformally equivalent to an annulus
l<lz,l<r,(<c), where , corresponds to the circle Iz.,I--1. We may
use z, as a local parameter near ,.

Next we delete an arbitrarily fixed interior point P0 of R and get
a new open Riemann surface R0=R--{p0}. Denote by 0 the pointlike
ideal boundary of R0 which arises from "the puncturing P0". For later
use we take a punctured parametric disk U0 about P0:0<lz01<r0 (< ).

Let P be the partition of R0 into 3R and 0, while Q denotes the
canonical partition of 3R0 (it should be noted that we are now concerned
with the new Riemann surface R0). Denote by A the real Hilbert
space of square integrable complex harmonic semiexact differentials on
R0 whose real parts are harmonic measures. We know that A is a
behavior space on R0 and furthermore it is self-dual with respect to R
([7]). So we can set Ao=A’o=A in the preceding section. In other
words, we may deal with the Kusunoki’s class of canonical semi-
exact differentials (cf. [4], p. 340; see also [3]).

In order to construct generalized divisors, we set

a ds, dzo/Z/ on U0,
(0 on U- Uo, i= 1, 2, ., k,

and

dz/z on U,
:-’- --dz+/Zj+l on U/, ] 1,2,...,k--l,

0 on U- U t U/,
where U= J_-0 U. Then a and r are clearly regular analytic differ-
entials on U. What is more, a is a non-degenerate (Q)A-singularity
at rio. Also it is easily seen that r is a non-degenerate (P)A-singu-

larity at R---Ro--flo. Indeed, [ r=0 but I" r --I" r=2i=/:0
J

and hence v can never have A-behavior. We denote by Ve (resp. VQ)
the real vector space spanned by the equivalence classes of r’s (resp.
a’s) modulo A-behavior. Then Ve (resp. VQ) is a (P)A- (resp.
(Q)A,-) divisor.

Applying Theorem I to z/=(Ve, VQ), we know the existence of a
non-constant f0eq(1/z/). For we have indz/--1. By definition o
2(l/z/), (i) f0 is regular analytic all over R0, (ii) its differential dfo is a
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multiple of V i.e., f0 has a polar singularity at 0 of order at most k
and has A-behavior near R, and (iii) f0 satisfies eof0r=0,
2,..., k--1. The last condition, together with a part of (ii), means
that Re f0 assumes the same constant value on each fl, i=1, 2, ..., k.
As for the discussion concerning the number of .sheets of covering

fo(Ro) over , we can make use of the argument principle as in Kusunoki
[3] (see esp. pp. 256-257). Subtracting an appropriate (complex) con-
stant from f0 if necessary, we obtain a non-constant meromorphic func-
tion f on R which is requested. (We note that f e 0(R).)

3. It should be noted that the bound of the number of sheets of
S in Theorem 2 can be made small. Actually, we can prove the fol-
lowing refinement of Theorem 2.

Theorem 2’. A plane region R bounded by k analytic Jordan
curves can be mapped conformally onto an at most [(k+ 1)/2] sheeted
covering surface S over the Riemann sphere such that each boundary
contour of S is a slit on the imaginary axis. Here [x] stands for the
greatest integer which does not exceed x.

For the proof we only need to replace a for i[(/+1)/2] by
--/- 1 dzo/Zo/, ]+ [(k+ 1)/2]=i. Certainly these are linearly inde-
pendent differentials over the reals.

Also there is no difficulty to extend the above results to the case
of positive genus (cf. the proo of Theorem 2’ and [3]). Namely we
have

Theorem 3. Let R be the interior of a compact bordered Riemann
surface of genus g with k boundary components. Then R is con-
formally equivalent to an at most g + [(/+ 1)/2] sheeted covering surface
S over the Riemann sphere whose boundary consists of k line segments
lying over the imaginary axis.

Needless to say, our theorems imply the existence of meromorphic
unctions whose real parts are (I)L-principal functions (cf. [l], [5], [6]).
We have thus shown that there is an (I)L-principal unction u on R
whose conjugate u* is also single-valued i the order of the preassigned
singularity of u is sufficiently large. This result is easily verified by
making an ppropriate linear combination o (I)L-principal unctions.
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