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1. In the former papers of this series we have studied the pro-
blem of the estimation of the least almost-prime in an arithmetic pro-
gression, and we have shown that it is possible to improve drastically
Richert’s results in this field if we confine ourselves in asymptotic esti-
mations, i.e. for almost all reduced classes modulo a fixed integer or
for almost all modulus with a fixed residue.

Now in this note we show a possibility of uniform improvements
on Richert’s results [1]. Our argument depends on a sieve idea of
Selberg [3], and it also depends on a natural assumption concerning
the value distribution of the divisor function in arithmetic progressions.
By the way we shall give a result on the Twin-Prime Problem, which
may throw light on the possibility of the improvement on Selberg’s
result [3].

In what follows r(n),/(n), (n) stand for the divisor, the Moebius
and the Euler functions, respectively. Also s is an arbitrary small
fixed positive constant.

2. Let denote by D(x; q, l) the sum
(n),

n’<x
(mod q)

and by D(x; q) the sum

E r(n).
n_

(nq) =1

Then we introduce the following assumptions"

_q)," D(x; q,/)= 1 -D(x; q){l+O((log x)-)},
(q)

uniformly or q =< x and (q, l) 1,

_q)*" max max D(y; q, 1)--
q_xa y<x (q,l) =1

1 :D(y; q)
(q)

(( x(log x) -K,

where E and K are arbitrary but fixed large constant.
show

Theorem 1. Let

I(N q, l; z)=
N<n’<2N

(mod q)

Then we can
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Io(N q, l; z)-- , [2(n)
N<n2N

(mod q)

Then by an appropriate choice of and by the assumption , we
have

2 log z log N

,N- N(1/_qN Min
z

Corollary to Theorem 1. If we assume , then there exists a
P (an integer with 2 prime factors at most) such tha$

P.--1 (mod q), p(P)=/=0, P=<Max (qm+, q+,),
uniformly for all l, q, (q, l)--1.

Theorem 2. Le

I(N z)-- l(n)l(n+ 2)(r(n) + r(n-t- 2)) , 2
2Vn2N din(n+2)

dz

I0(N;z)= ()(+2) 2
N<nN gin(n+2)

Then, by an appropriate choice of and z and by the assumption,
we have

I(N z)/Io(N; z)2(1 +4/a)(1
Remark to Theorem 2. Hooley [2] confirmed 2n, which, with

Theorem 2, gives Selberg’s result [3], [4].
3. The actual values of ’s may have much interests. In Theo-

rem 1 we have set
2=Y(z)-z(d) (l+2/p) r(n)p(n)/n,

PI uz/g
(dq,n) =1

i dz, (d, q)=l, and 2=0 otherwise, where
Y(z) r(n)z(n)/n.

nz
As or Theorem 2 wehave set z=N/-’ and

E n_r(n)z(n) lip
 -2/p :2/P

(n2d) =1

if dz, 2d, and =0 otherwise, where

ra() being the number of representations of as a roduet of g ositive
integers.
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