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Introduction. The integral group ring ZG of a finite abelian
group G is an important example of Gorenstein ring of dimension one
(see [11,[2]). In this case, since ZG is isomorphic to the character
ring R; of G, we say that R; is a Gorenstein ring. In this paper we
show that the character rings of arbitrary finite groups are Gorenstein
rings.

1. Let G be a finite group. Then the character ring R; of G is
a commutative ring and a finitely generated free Z-module. Its unity
element is the principal character of G. As for group rings ([3]), we
see that R s isomorphic to the dual Hom , (R, Z) as Rs~-modules. This
is equivalent to the existence of a nondegenerate symmetric bilinear
form (,): Rg X Re—Z which satisfies the following conditions:

1) (rs,t)=(r,st) for r,s,t € Rg.

2) For each feHom, (R4, Z), there exists an se R, such that
f)=(r,s) for r ¢ Rg.

Such a bilinear form (, ) is given by

(7" 3) =<Ta 8>
for r, s € R;, using the ordinary inner product
1

<t v>—-m eré x)v(),
where g denotes the function defined by a(x)=p(z™") for v € G. In fact,
if (r, 8)=0 for all r € Rg4, then {y3, s>=0 for all irreducible characters y
of G. Hence s=0, which shows that (, ) is nondegenerate. Moreover,
for each f ¢ Hom, (R4, Z), put

8=; J@

where the sum is taken over all y. Then f(y)=(y, s) for all . Since
{x} is a Z-basis of R4, we have f(r)=(r, s) for all r € R;.

Hence R, is a Frobenius Z-algebra in the sense of the definition
given in [3]. It follows from Corollary 8 of [3] that R, has a finite
injective dimension. Thus from the fundamental theorem of [2] we
obtain
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Theorem 1. The character rings of finite groups are Gorenstein
rings.

Let 4 be a commutative ring. Since the isomorphism R;—
Hom, (R4,Z) is extended to the isomorphism AQ ,R;—Hom,(41,Q,.Rs,4),
we see that A® R, is a Frobenius A-algebra. This ring is a supple-
mented algebra under the mapping AQ,R;—A given by r—r(1l) for
re AQ,Rs;. Therefore we have

inj dim A® , Rs=inj dim 4
(see Corollary 8 of [3]). This yields

Corollary 1. For a commutative ring A, the ring AR, R4 is
Gorenstein if and only if A is Gorenstein.

2. The next result gives us an example of a local Gorenstein ring
of dimension one.

Let G be a finite p-group, and let S=Z—pZ. By Corollary 1 we
see that S™'R; is a Gorenstein ring. We shall prove that S—'R; has
only one maximal ideal S—'M,, where

M,={reRg|r(1) € pZ}
is a maximal ideal of R.

It is evident that any maximal ideal of S—*R; is of the form S—'M
for some maximal ideal M of R; such that MNZ=pZ. Let A be a Z-
algebra generated by all |G|-th roots of 1. Then every maximal ideal
M of R, is expressible as

M={reRg|r(c) € p}
for some ¢ ¢ G and some maximal ideal p of A ([7]). Moreover we see
that MNZ=pZ implies pNZ=pZ. Since G is p-group, the unity ele-
ment is only one p-regular element of G. Therefore, if YNZ=pZ,
then r(c)=r(Q1) (mod p) for re Ry and ce G (cf. Lemma 7 of §10.3 in
[7D. This shows that if MNZ=pZ, then M=M, Hence S*M,is a
unique maximal ideal of S—'R,.

3. Finally we shall prove a result related to the above example.
It is easily seen that the ring S—'R; is a finitely generated S—'Z-module
and has no non-zero nilpotents.

Theorem 2. Let A be a local ring of dimension one which satis-
fies the following conditions:

1) A has no non-zero nilpotents.

2) There exists a Dedekind subring R of A such that A is a finitely
generated R-module. Then A is a Frobenius R-algebra if and only if
A is a Gorenstein ring.

It suffices to prove the “if” part. We need the following lemmas.

Let A be a Noetherian ring with unity element, and K the total
quotient ring of A. For fractional ideals b and a in K, let b: a denote
the set of all elements x of K such that xaCp.
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Lemma 1 ([4], Lemma 2.1). Let a and b be fractional ideals in
K such that aK=K=bK. Then there exists an isomorphism a: a:b
—Hom (b, a) as A-modules which maps each x of a:b to the multipli-
cation by x.

Lemma 2 ([4], Lemma 2.3), Let the notation be as above. Then
there exists an isomorphism a: (a: b)—Hom, (Hom, (b, a), a) such that
the diagram

b—i>a:(a:6)

Nl

Hom, (Hom, (b, a), a)
1s commutative, where i is the inclusion and c is the canonical mapping.

Corollary. Let the notation be as above. If A is a Gorenstein
ring, then we have b=A: (A: D).

Proof. From Lemma 2 it follows that the mapping ¢: b—Hom,
(Hom, (b, A), A) is injective (i.e. b is torsionless). By Theorem (6.2)
of [2] we see that ¢ is an isomorphism, hence b=A4: (4: b).

We turn to the proof of the “if” part of Theorem 2. We assume
that A is a local Gorenstein ring of dimension one and satisfies the
conditions of Theorem 2. Let S=R—{0}. Then S'R is the quotient
field & of R. By hypothesis K=S"'A is semisimple and finitely
generated as a k-module (moreover K is the total quotient ring of A).
From Proposition 5 of [3] it follows that K is a Frobenius k-algebra,
that is, K is isomorphic to Hom;, (K, k) as K-modules. We denote by
A* the image of Homjy (A,R) under the embedding Homj (4, R)
—Hom,, (K, k)—»K. Then it is easily verified that A*K=K. We shall
prove that A* is isomorphic to A, which completes the proof.

First we show that A=A*: A*. By Lemma 1 the following dia-
gram is commutative:

A -—z—> A*: A*
a
4
Hom, (A*, A%)
c B
Hom, (Homj (4, R), Homj (4, R))

Y
Homjy (Homg (4, R), R)

Here g is the mapping induced by the isomorphism A*—Homg (4, R)

as A-modules, and 7 is the natural isomorphism. Since A is a finitely

generated torsion-free R-module and R is a Dedekind ring, we see that
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A is a projective R-module. Therefore the canonical mapping ¢ is an
isomorphism. This implies A=A*: A*.

We have seen that A*K =K, hence A* has non-zero divisors of A.
Since A* is finitely generated as an A-module, there exists a non-zero
divisor # of A such that uA* is an ideal of A. From Theorem
124 of [5] it follows that uA* is generated by non-zero divisors of A,
say 4, ---,U,. Putv;,=u;'u. Then we have A=N]_, v, 4*. Indeed,
N vA*¥*=A%: > Av;'=A*: A*=A. By Corollary of Lemma 2 we
have

>uAiv A=A (A: 3, (A:v,A%)),
and
A: 3 (A v A=, (A: (A:v,A")) =, v A*=A,
hence A=>;(4A: v,A*).

On the one hand, since A is a local ring and A : v,A* are ideals of
A, weseethat A=A : v,A* for some 4. This implies A*=Av;!. Thus
A* ig isomorphic to 4, which proves our assertion.
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