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1. Introduction. The object of this note is to introduce a new
summation process, by means of which Taylor series of the regular
function of bounded type in |[2|<1 can be summable on |[z|=1. The
details of proofs will be published elsewhere in near future.

Let f()=> 7., a,2" be the regular function of bounded type in the
unit circle. In general, the series > 7, a,e!*’ is not Cesaro-summable.
In fact, put

a l+z > "
f(@)=exp (_- ):Zanz for «>0, |2|<1,
2 1—2z/ 7=

which is the regular function of bounded type in the unit circle. Then
we have

a,=exp (2van+ 0 (Inn))
([1] pp. 107-108). Since there exists no k> —1 such that a,=o0(n*), the
series > =, a,2" is not Cesaro-summable on |z|]=1 (2 p. 78).
2. Notations and definitions. As usual, for k> —1, |2|<1, we
put

"““—(1_190)“1 =3 Ap-an, —(1_];0)“1 Saar=3 80.an,
where SP=3>7"a,A®,, CH=S®/A® If C»—s as n—co, we say
that the series > ,a, is Cesaro-summable (C, k) to s. For brevity,
we write

i a,=s(C, k).
n=0

Generalizing this Cesaro-summation, we introduce following sum-
mation process. For k> —1, >0 and |2|<1, we put

1 o < n
T (1_90):,5?0 Oullly )%,
1

o & n__ hd "
e (125) o= Sk e

where Sn(k’ CV)=Z?=0 aibn—i(k7 C{), Cn(k» a):Sn(k’ C()/bn(k’ 0(). If Cn(k, CZ)
—8 a8 n—co, we say that the series > 7_, o, is summable (C, k, a) to s.
For brevity, we write
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f‘_, a,=s(C, k, a).
n=0

We call this summation (C, k, a)-summation.
3. Abelian theorems. The interrelation between Cesaro-sum-
mation and (C, k, o)-summation is shown in
Theorem 1. Let f(x)=) 7, a,2™ be convergent for |x|<1, where
{a,} are real numbers. Then following inequalities hold ;
lim Cr(r,k) éli_.m Cn(k’ Ol)éli_m C.(K, Of)gill_ll f(x)é

N+ n—roo n—roo

lim f(.%') él—i—ﬁ Cn(k/9 @) éﬁa Cn(k’ @) ém C1(zk),

-1 Nn—>0 n—oo N

where K’ >k>—1, a>0.

Taking the real and imaginary parts respectively, we get

Corollary 1. [A]l If > .a,=s(C, k), then > . ,a,=s8(C,k,a),
where k> —1, «a>0. [B] If > oa,=s(C, k, @), then > 5 ,0,=s(C, ¥, a)
where kK'>k>—1, a>0.

Corollary 2. If >z oa,=s(C,k,a) (k> —1,a>0), then

lim i a,xr"=s.

z-1-0 =0

We can extend Corollary 2 as follows;

Theorem 2. Let f(2)=> 7, a,z" be convergent for |2|<1, where
{a,} are complex numbers. If > 7 ,a,=s(C,k,a) (k> —1,a>0), then
f(@) tends uniformly to s as z—1, ze D(K,d), where D(K,d) is the
“cuspidal domain” with its cusp at z=1:

{z—1=d}Ufe=re": |9|<KA—1)",

d: a sufficiently small positive constant and K : a positive finite constant.

4, Tauberian theorems. We denote by N the class of regular
functions f(z) of bounded type in [2|<<1. Then we have

A =lim 1/20 I In* | f(re')| d§< + oo.
r—1 0

Next Tauberian theorem holds ;
Theorem 3. Let f()=27.,0,2" ¢ N and let «a=2A(f)>0. Sup-
pose that f(z) has the angular limit: f(e’°) at z=e’ such that
F@=r(")+o(v]z—e™)  asz—e’, zeS,
where S is Stolz domain with its vertex at z=e%. If
(%) lim (1—7) In* M(r,5,0)<a

71

for sufficiently small >0, where
MGy 7, 09 =max |1/h- [ | 7o) s
lhlsy 4o

then > 7o a,e'™’ is summable (C, k, &) to f(et’) for k>1/2.

As an immediate consequence, we have

Corollary 3. Let f()=> 7 ,0,2"e N and let a=2A(f)>0. If
Sf @ is regular at z=¢€'", then > 7, a,e™ is summable (C, k, a) to (&%)
for k>1/2.
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In Theorem 3, the condition (x) can be replaced by more practical
one;
Corollary 4. In Theorem 3 the condition (x) can be replaced by
J - ¢ (n* | f(re”)Ddo=01)  asr—1,
7

6o~
for sufficiently small >0, where ¢(x) is o non-negative function of x
0=2r<oo) such that $(x)/ x is non-decreasing and tends to co as x—oo.
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