75. A Counterexample for the Local Analogy of a Theorem by Iwasawa and Uchida

By Shuji YAMAGATA

Department of Mathematics, Tokyo Institute of Technology

(Communicated by Kenjiro SHODA, M.J.A., June 8, 1976)

Let Q be the rational number field, \bar{Q} the algebraic closure of Qand k_1, k_2 two finite extensions of Q contained in \bar{Q} such that $\operatorname{Gal}(\bar{Q}/k_1) \cong$ $\operatorname{Gal}(\bar{Q}/k_2)$ as topological groups. As K. Iwasawa and K. Uchida have independently proved (cf. [2], [6]), k_1 and k_2 are conjugate over Q. In this paper we prove that the analogy for local number fields is not valid: Let p be a prime number, Q_p the field of p-adic numbers, \bar{Q}_p the algebraic closure of Q_p . Then there are finite extensions K_1, K_2 of Q_p contained in \bar{Q}_p such that $\operatorname{Gal}(\bar{Q}_p/K_1) \cong \operatorname{Gal}(\bar{Q}_p/K_2)$ as topological groups, and that K_1 and K_2 are not conjugate over Q_p .

§ 1. Preliminaries. Let K be a local field, i.e. a commutative field which is complete with respect to a discrete valuation, and L/K a finite Galois extension with G=Gal(L/K) such that the extension of their residue class fields is separable. Let v_L be the normalized discrete valuation of L, and put $A_L = \{a \in L \mid v_L(a) \ge 0\}$ and $G_x = \{s \in G \mid v_L(s(a) - a) \ge x+1 \text{ for all } a \in A_L\}$ for $x \ge -1$. The function $\varphi_{L/K}(t)$ for $t \ge -1$ is given by

$$\varphi_{L/K}(t) = \int_0^t \frac{dx}{(G_0:G_x)}$$

Let $\psi_{L/K}$ be the inverse function of $\varphi_{L/K}$ and put $G^x = G_{\psi_{L/K}(x)}$. A real number $x \ge -1$ is called a ramification number of L/K (an upper ramification number of L/K, respectively) if $(G_x: \bigcup_{\epsilon>0} G_{x+\epsilon}) \ge 1$ (if $(G^x: \bigcup_{\epsilon>0} G^{x+\epsilon}) \ge 1$, respectively). When L/K has only one ramification number x, x is also the only one upper ramification number of L/K and vice versa. L/K is totally ramified if and only if $G=G_0$.

Lemma (cf. [4], p. 197 and p. 198). Let K_i/K be a cyclic extension of degree p with only one upper ramification number t_i for i=1,2, where p is the characteristic of the residue class field of K. Assume that the residue class field extension of K_i/K is separable. Put M $=K_1K_2$. If $t_1 \neq t_2$, M/K_2 is a cyclic extension of degree p with only one upper ramification number $\psi_{K_3/K}(t_1)$.

In the above situation, we remark that M/K_2 is totally ramified if K_1/K is totally ramified.

Let ζ_n be a primitive *n*-th root of 1 in \overline{Q}_p .

Let K/Q_p be a finite extension contained in \bar{Q}_p of degree m with residue degree f. Let K_{tr} be the maximal tamely ramified extension of K in \bar{Q}_p . The Galois group of K_{tr}/K is the total completion of a group generated by two elements s, t satisfying a unique relation $s^{-1}ts$ $=t^{pf}$ (cf. [1], p. 463). Let r be the largest integer such that a primitive p^r -th root of 1 is contained in K_{tr} . Put $q=p^r$. Let c be an integer such that $\zeta_q^c = \zeta_q^s$, and τ the uniquely determined p-adic integer such that $\tau^{p-1}=1$ and $\zeta_q^r = \zeta_q^t$. We fix c for each K. Then the Galois group Gal (\bar{Q}_p/K) is determined by m, f, q, c, τ for odd p and by m, f, q, c (if $q \ge 4$) for p=2 as a topological group (cf. [3], [7]). If $K(\zeta_q)=K$, we assume c=1 in § 2.

§ 2. Examples. Theorem. (i) Let p be odd. Denote by K_0 $Q_p(\sqrt[p]{\zeta_p-1}),$

and by K_i for $i=1, 2, \dots, p-2$

$$oldsymbol{Q}_p(\zeta_p, lpha_i) ext{ with } lpha_i \in oldsymbol{ar{Q}}_p ext{ such that } lpha_i^p - lpha_i = \Bigl(rac{1}{\zeta_p - 1}\Bigr)^i.$$

Then $\operatorname{Gal}(\bar{\boldsymbol{Q}}_p/K_i)$ and $\operatorname{Gal}(\bar{\boldsymbol{Q}}_p/K_j)$ are topologically isomorphic for $0 \leq i, j \leq p-2$, but K_i and K_j are not conjugate over \boldsymbol{Q}_p if $i \neq j$.

(ii) Denote by L_0

$$Q_2(\sqrt{\zeta_4-1}),$$

and by L_1

$$oldsymbol{Q}_2(eta) \,\, with \,\, eta \in oldsymbol{ar{Q}}_2 \,\, such \,\, that \,\, eta^2 \!-\!eta \!=\!\!rac{1}{\zeta_4\!-\!1}$$

Then $\operatorname{Gal}(\overline{\mathbf{Q}}_2/L_0)$ and $\operatorname{Gal}(\overline{\mathbf{Q}}_2/L_1)$ are topologically isomorphic, but L_0 and L_1 are not conjugate over \mathbf{Q}_2 .

Proof. (i) By [5], p. 79 and p. 80, $K_i/Q_p(\zeta_p)$ is a totally ramified cyclic extension of degree p with only one upper ramification number p for i=0 and i for $i=1, 2, \dots, p-2$. By [5], p. 86, $Q_p(\zeta_{p^2})/Q_p(\zeta_p)$ has the only one upper ramification number p-1. Let $m_i, f_i, q_i, c_i, \tau_i$ for K_i be as in § 1. We have $m_i = p(p-1), f_i = 1$. Since by Lemma $K_i(\zeta_{p^2})/K_i$ is totally ramified of degree p, we have $q_i = p$ and so $c_i = \tau_i = 1$. Therefore Gal (\bar{Q}_p/K_i) and Gal (\bar{Q}_p/K_j) are topologically isomorphic for $0 \leq i$, $j \leq p-2$ (cf. § 1). On the other hand, for $s \in \text{Gal}(\bar{Q}_p/Q_p)$ we have $s(K_0) = Q_p(\sqrt[p]{s(\zeta_p)-1})$ and $s(K_i) = Q_p(s(\zeta_p), s(\alpha_i))$ with $s(\alpha_i) \in \bar{Q}_p$ such that $(s(\alpha_i))^p - s(\alpha_i) = \left(\frac{1}{s(\zeta_p)-1}\right)^i$ for $i=1, 2, \dots, p-2$. Counting the upper

ramification number (cf. [5], p. 79 and p. 80), we have K_i and K_j are not conjugate over Q_p if $i \neq j$. (ii) Similarly $L_i/Q_2(\zeta_i)$ is a totally ramified quadratic extension with only one upper ramification number 4 if i=0 and 1 if i=1. By [5], p. 86, $Q_2(\zeta_i)/Q_2(\zeta_i)$ has the only one upper ramification number 3. Let m_i, f_i, q_i, c_i for L_i be as in § 1. By the same way as in (i), counting $m_i=4, f_i=1, q_i=4, c_i=1$ we have that

No. 6]

 $\operatorname{Gal}(\bar{\boldsymbol{Q}}_2/L_0)$ and $\operatorname{Gal}(\bar{\boldsymbol{Q}}_2/L_1)$ are topologically isomorphic, and that L_0 and L_1 are not conjugate over \boldsymbol{Q}_2 .

Remark. Let K_i be a local field of characteristic p > 0 with finite residue class field k_i for i=1,2. Let K_i^{ab} be the maximal abelian extension of K_i for i=1,2. Assume that $\operatorname{Gal}(K_1^{ab}/K_1)$ and $\operatorname{Gal}(K_2^{ab}/K_2)$ are topologically isomorphic. Then K_1 and K_2 are isomorphic.

References

- K. Iwasawa: On Galois groups of local fields. Trans. Amer. Math. Soc., 80, 448-469 (1955).
- [2] ——: Automorphisms of Galois groups of number fields (to appear).
- [3] A. V. Jakovlev: The Galois group of the algebraic closure of a local field (in Russian). Izv. Akad. Nauk SSSR Ser. Mat., 32, 1283-1322 (1968) (English translation in Math. USSR Izv., 2, 1231-1269 (1968)).
- [4] E. Maus: Arithmetisch disjunkte Körper. J. reine u. angew. Math., 226, 184–203 (1967).
- [5] J.-P. Serre: Corps locaux. Hermann, Paris (1968).
- [6] K. Uchida: Isomorphisms of Galois groups (to appear).
- [7] I. G. Zel'venskii: On the algebraic closure of a local field for p=2 (in Russian). Izv. Akad. Nauk SSSR Ser. Mat., **36**, 933-946 (1972) (English translation in Math. USSR Izv., **6**, 925-937 (1972)).