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97. On Kronecker Limit Formula for Real Quadratic Fields

By Takuro SHINTANI

(Communicated by Kunihiko KODAIRA, M. J. A., Sept. 18, 1976)

1. Let F' be the real quadratic field with diseriminant d embedded
in the real field R. Let y be a primitive character of the group of the
ideal class group modulo | of F'. Assume that for a principal integral
ideal (1) of F, y((w) is given by the following formula (1).

(1) x(() =sgn (L),

where y, is a character of the group of residue classes modulo f. Let
L;(s, x) be the Hecke L-function of F' associated with the character y.
In this note, we present a formula for the value L;(1, y) which seems
to be new and suggestive. For previously known relevant results, we
refer to E. Hecke [1], [2], G. Herglotz [3], C. Meyer [4], C. L. Siegel
[6] and D. Zagier [7].

2. For a pair of positive numbers a=(a,, a,), set

ot S () () )

a, a, 2na,

+_1_(i+i) loga,— 1 (r—1log 2r)

2 1 a, 2a1
+ U= log_a'i__l(_l__+,_1_)
20,a, o 2\a, a
and set
1 “{,(n%) al} 7t 1 T
c(a)= — — loga ,
(@) 203 n; v a, N, + 12a2 20,0, g0t 2a,0,

where y is the Euler constant and 4 is the logarithmic derivative of
the gamma function.

Denote by F'(a, z) an entire function of 2z given by the following:

F(a,2)=zexp{—c(®)z— cz(a)zZ}II’<1 + Wj%*)

2 2t
X exp { no, +ma, + 2(1w1+ma2)}

where the product is over all pairs (n, m) of non-negative integers which
are not simultaneously equal to zero.

We note that the function F'(a, 2)~! is the double gamma function
introduced and studied by Barnes in [8].

Let ¢>1 be the generator of the group of totally positive units of
F. Choose a complete set of representatives aj, a,, - - -, a,, of the group
of narrow ideal classes of F. For each k (1<k<h,) set
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Ry ={z=v+eyec(a;)7"; 2,9 Q,0<2<1,0<y<1}.
It is easy to see that R,(f) is a finite subset of (a,f)~'. For each z ¢ R,(}),
set
x:(2) =x(a,(2)).
The L-function Lz(s,y) is an entire function of s which satisfies the
following functional equation (2).

@ (e

—wAT(E)r(*TL)Ls, 10,

where A=+ dN(H)/z (N is the norm of f), and w(y) is a certain com-
plex number of modulus 1.

Theorem 1. Notations being as above, let y be a primitive

character of the group of ideal classes modulo | of F' which is of the
form (1), then

w(x)“lﬁ%@LF(l, D=— z T, @ o {F((1, 9, AL, ¢), 2}

(¢’ and 2’ are conjugates of ¢ and z repectively).

Let KCR be a quadratic extension of F' in which exactly one of
two archimedean primes of F ramifies. Let b be the relative discrimi-
nant of K with respect to F' and let y be the character of the group of
ideal classes modulo b of F' which corresponds to K in class field theory.
Assume that the fundamental unit 5, of F' is the m-th power of a primi-
tive unit 5, of K (m>1). Further take a unit y of K so that +7 and
7 generate the group of units of K. Denote by 7° the conjugate of 3
with respect to F' and denote by hy (resp. hx) the class number of F
(resp. K). We may assume that 7>(°|>0.

Corollary to Theorem 1. Notation being as above,
ho

(np°l/n*==T] H(b) {F(1,9,2)F((1, ), 2))}mrrme,

k=1 2€ Ry
3. The next two propositions are proved by straightforwards
arguments involving only elementary theory of functions.
Proposition 1. The function F(a,z) is an entire function of z of
order 2 which is symmetric with respect to a, and a, and satisfies the
following difference equations:

F(a,z+a) =—~}7}F(a, z)F(i> exp {(i — %) log az} ,

423 @y
F(a,z+a,) ::%L__F(a, z)F(%) exp {(ai — -;—) log al} .
1 2

For a positive number 2<1, we denote by I,(+ o) (resp. I,(1)) the in-
tegral path in the complex plane consisting of the linear segment
(400, 2) (resp. (1, 2)), the counterclockwise circle of radius 1 around
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the origin and of the linear segment (1, + o) (resp. (1, 1)).
Proposition 2. Notations being as obove, if a, and a, are linearly
independent over the rational number field Q, there exists a constant
C(a) which does not depend on z such that
.__L elartas—2)t logt dt
271 Jnre) (e —1)(e®2—1) ¢

=log F(a, z)+(g;:fl{z2—(al+a2)z}+0(a)

a’l 2
Rez>0, 0<a<1, 2<@m)/a,, 1<(2m)/a,).
For a pair of positive numbers a=(a,, a,) and a pair of non-negative
numbers r=(z,, 2,) #0, set

2

{(s,a, x)=ni [T {#.+m+ (2, +n)az} %,

ym=0 k=1
then the Dirichlet series {(s, a, ) is absolutely convergent if Re s>1
and is extended to a meromorphic function in the whole complex plane.
Proposition 3. Notations being as above, we have

(Lt o) =—log F,0),m+m0)F(, 0,2 +2a)

o _r—al & (@) 1
+@r—3m)C0, 4, )T 5 { o (1+ o )(x1+wzak)}

+ {—1—@71'(-1— + i) + e ] log (&)}Bz(xl) +aiB,(x)B,(x,)
4 a, a, 4a,0, a,

+ —’ﬁf'(al +a)By() +C((L, a)+ C(, ),

where B, and B, are, respectively, the first and the second Bernoulli
polynomial and the constant C((1, ay)) (k=1,2) is as in Proposition 2.

Proof. If Res>1, we have the following integral representation
for &(s, a, ).

()3, a x>=j: j () g, t)dt,dt,,

1—x)( + )+ A —x)(at, + a,t,)}
Whereg(t,t)z eXp{( I\ 2 2\ Uy 2 .
. {1—exp (¢, + t)}{1—exp (a.t, + a.t,)}
The integral in the right side of the above equality is equal to
r o1 r wg(t, tu)dtdu+r o1 f wg(tu, t)dtdu.
1] 0 0 0
Hence, for a sufficiently small positive number 2, we have
(1 —exp 4ris)(1 —exp 271s)I'(s)*L(s, a, )

- j -1t f wig(t, tu)du-l—f {1t
(3) T2+ 12D

Ia(+0)

Xj w g (tu, t)du.
I;(1)

Proposition 3 now follows easily from (3) and Proposition 2.
4, It follows from the functional equation (2) that
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_WANG fd o
(4) w(y) ~-é;——Ll,w(l,x)—{—(JZ—S—LF(s,x )}

On the other hand, it is easy to see that
ho
(5) Lg(s,p= k; ze;(f) 1N (D)~ (s, (6, &), (@, ¥)) (z=2x+ey).

Theorem 1 is now an immediate consequence of (4), (5) and Proposition
3. Details will appear elesewhere.

Remark. The method in the proof of Proposition 3 has been
applied in [5] for the evaluation of zeta-functions of totally real algebraic
number fields at non positive integers.

§=0
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