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Finiteness Theorem or Holonomic Systems of
Micro.dijerential Equations

By Masaki KASHIWARA*) and Takahiro KAWAI**)

(Communicated by K6saku YOSlDA, M. ff.A., Sept. 13, 1976)

It is known that the solution space of a holonomic system
(=maximally overdetermined system) of linear differential equations
enjoys a nice finiteness property (Kashiwara [2]). This result naturally
raises an interesting question whether analogous results hold for
holonomic systems of micro-differential equations (=pseudo-differential
equations.) Of course, we should talk about the microfunction solutions
in this case and this makes the situations complicated.

However, we can overcome the difficulties by making use of a recent
result on the boundary value problem for elliptic systems (Kashiwara-
Kawai [4]) on one hand and the concrete representation of the action
of micro-differential operators on microfunctions (Kashiwara-Kawai
[3] and Bony-Schapira [1]) on the other hand.

Our result is the following

Theorem. Let M be a real analytic manifold, the sheaf of
microfunctions and the sheaf of micro-differential operators. Let

be a holonomic system of micro-differential equations defined in a
neighborhood of a point p of the pure imaginary cotangent bundle
-&-IT*M. Then, the dimension of the vector space xt(,C)p is
finite for any ].

We can prove this theorem in the following manner.
(I) Define a real hypersurface S in C/ by {(t, z) e C
Set/2={(t, z) e C+1; Re t>lzl2}. We define C’ by the inductive limit of
)(U ( 9)/)(U), where U runs over a fundamental system of neigh-
borhoods of (t, z)=(0, 0). Then we can find an isomorphism between
’, and ’c/,(0,0;-, and an isomorphism between C, and C’ so that the
action of ’, on C, is compatible with that of ’c/,(0,0;-) on C’.
(Kashiwara-Kawai [3] 2.1.)

Further, we can choose these isomorphisms so that the character-
istic variety A of the ’c.+,(0,0;_,-module /’ corresponding to / is
finite over Cn/, since the characteristic variety of /is Lagrangian.
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(II) Let be a sufficiently small fixed positive number. Let R be the
set of all micro-differential operators P(t, z, D, D)-- a(t, z, D)D:

of order __<- 1 satisfying the following property"

P(t, z, D, D) is a polynomial in D and A(t, t’, z, D)=
(]- 1)

X (t--t’)-Xa(t, z, D,) is a differential operator defined for [t[,
Let c be a positive number such that c <3. Let U be an open set

in {(t, z) e C+ It[, [z]<} which satisfies the following properties"
( 1 ) U(zo) {t e C; (t, Zo) e U} is convex.
( 2 ) U(zo) is void if U(zo) does not contain c.

Then any P(t, z, D,, D,) in R, acts on G(U) by the following rule"

( 3 ) P(, z, D, D,)X(t, z) =[ d(t, t’, z, D,)f(t’, z)dt’.

(See Kashiwara-Kawai [3] and Bony-Schapira [1].) Note that, if P and
Q belong to R,, then PQ belongs to R and that Ave(t, t’,z,D,)

=[ Av(t, t", z,D)AQ(t", t’, z, D)dt’holds. Hence P(Vf)=(PV)f holds.
jt

(Bony-Schapira [1])
(III) Since the characteristic variety A of ’ satisfies A -(O)=Cdt
for " T*C+C+, we can find a resolution of ’ in the following
form"

o Po P0< ’< c+c+, c+-
where P’s are micro-differential operators contained in R, for a suf-
ficiently small >0.
(IV) Define 9 by {(t, z) e C+; Re >lz[+p) and U, by {(, z) e C+;
Re t>a[z]+lIm tl-,) for p,,>0. Herea is a fixed constant >1. Then
for some >0, (9 U U,) (0<p<e, e((1) is non-characteristic with re-
spect to’ in a fixed neighborhood of the origin, that is, the conormal
set of (9 U U,) is disjoint from A. We take a convex open set
satisfying the conditions (1) and (2) and ,= U, for Re t< c. Then, 9 also satisfies conditions (1) and (2). Therefore, any element in
R, operates on O(,) and G(, 9), and hence we get complexes"

O(u,). 0(u,)o O(u,), O(u,) ->...

Then, we have

(V) Making use of the assertion oI the non-characteristicness given

in (IV), we conclude that
H(O(U. n 9p. / O(u.).)H(O(U., n ,,). / @(u.,).)

is an isomorphism when 0(’<(( 1, ’< p, 0< p(" and 0
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Therefore, we have

H(O(U. )" / O(U.)’)--H(O(U. gi 9)" / O(U,)’)
Then, by making use of functional analysis (see Kawai [5], for ex-

ample), we can conclude that H(O(U,[2)’/O(U.)’) is of finite dimen-
sion. Furthermore, since we have

C,(,_/l, C) H(C)(U, )" / (C)(U,)’)
for any 0<p<, 0< << 1, we get the required result.

The detailed argument of this note will appear somewhere else.
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