91. The Existence and Uniqueness of the Solution of Equations Describing Compressible Viscous Fluid Flow in a Domain

By Atusi TANI

Tokyo Institute of Technology

(Communicated by Kôsaku YOSIDA, M. J. A., Sept. 13, 1976)

1. Introduction. The compressible viscous isotropic Newtonian fluid motion is described as follows: (the summation convention is used)

(1.1)

$$\frac{D\rho}{Dt} = -\rho \frac{\partial v_k}{\partial x_k},$$
(1.2)

$$\frac{Dv_i}{Dt} = \frac{1}{\rho} \frac{\partial}{\partial x_i} \left(\mu' \frac{\partial v_k}{\partial x_k} \right) + \frac{1}{\rho} \frac{\partial}{\partial x_k} \left[\mu \left(\frac{\partial v_i}{\partial x_k} + \frac{\partial v_k}{\partial x_i} \right) \right] - \frac{1}{\rho} \frac{\partial p}{\partial x_i} + f_i \quad (i=1,2,3),$$

(1.3)
$$\frac{DS}{Dt} = \frac{1}{\rho\theta} \frac{\partial}{\partial x_k} \left(\kappa \frac{\partial\theta}{\partial x_k} \right) + \frac{\mu}{2\rho\theta} \left(\frac{\partial v_j}{\partial x_k} + \frac{\partial v_k}{\partial x_j} \right)^2 + \frac{\mu'}{\rho\theta} \left(\frac{\partial v_k}{\partial x_k} \right)^2,$$

(ρ , density; v, velocity; μ , coefficient of viscosity; μ' , second coefficient of viscosity; κ , coefficient of heat conduction; p, pressure; f, outer force; S, entropy; θ , absolute temperature; $D/Dt = \partial/\partial t + v_k \cdot \partial/\partial x_k$).

By the physical requirements, μ , μ' , κ , p and S are considered to be functions of ρ and θ such that

(1.4)
$$\mu' + \frac{2}{3}\mu \ge 0; \ \mu, \kappa, p, S_{\theta} > 0.$$

If S is smooth, then it follows from (1.1) and (1.3) that

(1.3')
$$\frac{\frac{D\theta}{Dt} = \frac{1}{\rho\theta S_{\theta}} \frac{\partial}{\partial x_{k}} \left(\kappa \frac{\partial\theta}{\partial x_{k}} \right) + \frac{\mu}{2\rho\theta S_{\theta}} \left(\frac{\partial v_{j}}{\partial x_{k}} + \frac{\partial v_{k}}{\partial x_{j}} \right)^{2}}{+ \frac{\mu'}{\rho\theta S_{\theta}} \left(\frac{\partial v_{k}}{\partial x_{k}} \right)^{2} + \frac{\rho S_{\rho}}{S_{\theta}} \frac{\partial v_{k}}{\partial x_{k}}}.$$

We shall consider a first initial-boundary value problem of (1.1), (1.2) and (1.3') with the initial-boundary conditions:

(1.5) $\begin{cases} v(x,0) = v_0(x), \ \theta(x,0) = \theta_0(x), \ \rho(x,0) = \rho_0(x) \\ v(x,t) = 0, \ \theta(x,t) = \theta_1(x,t) \\ ((x,t) \in \Gamma_T), \end{cases} \quad (x \in \Omega),$

(Ω is a bounded or unbounded domain in R^3 , whose boundary Γ belongs to $C^{2+\alpha}$ and satisfies Lyapunov conditions (cf. [4]); $\Gamma_T = \Gamma \times [0, T]$). We assume that the compatibility conditions hold and that in (1.5)

(1.6)
$$\begin{cases} v_0, \theta_0 \in H^{2+\alpha}(\Omega), \ \rho_0 \in H^{1+\alpha}(\Omega), \ 0 < \overline{\rho}_0 \le \rho_0 \le \overline{\rho}_0 < +\infty, \\ 0 < \overline{\theta}_0 \le \theta_0 \le \overline{\overline{\theta}}_0 < +\infty, \ \theta_1 \in H^{2+\alpha}(\Gamma_T), \ \mu, \mu', \kappa, \ p, S \in \mathcal{O}_{1\infty}^{2+L}(\mathcal{D}_{\rho,\theta}), \\ f \in B^{1+L}(\overline{Q}_T), \end{cases}$$

$$\begin{split} &\left(\mathcal{D}_{\rho,\theta} \!=\! \{(\rho,\theta) \in (0,\infty) \times (0,\infty)\}; \\ & \overline{Q}_{T} \!=\! \overline{\mathcal{Q}} \times [0,T]; \\ & B^{n+\alpha}(\overline{Q}_{T}) \!=\! \left\{g(x,t) \!\mid_{r+|s|=0}^{n} |D_{t}^{r} D_{x}^{s} g|_{T}^{(0)} \!+\! \sum_{r+|s|=n} |D_{t}^{r} D_{x}^{s} g|_{T}^{(\alpha)} \!<\! +\infty\right\}; \\ & H^{n+\alpha}(\overline{Q}_{T}) \!=\! \left\{v(x,t) \!\mid \! \|v\|_{T}^{(n+\alpha)} \!\equiv\! \sum_{2r+|s|=0}^{n} |D_{t}^{r} D_{x}^{s} v|_{T}^{(0)} \\ & + \sum_{2r+|s|=(n-1)v0}^{n} |D_{t}^{r} D_{x}^{s} v|_{t,T}^{(\alpha/2)} \!+\! \sum_{2r+|s|=n} |D_{t}^{r} D_{x}^{s} v|_{x,T}^{(\alpha)} \!<\! +\infty\right\}; \\ & |v|_{T}^{(0)} \!\equiv\! \sup_{\overline{Q}_{T}} |v|; \\ & |v|_{t,T}^{(\alpha/2)} \!\equiv\! \sup \frac{|v(x,t) \!-\! v(x,t')|}{|t-t'|^{\alpha/2}}; \\ & |v|_{x,T}^{(\alpha)} \!\equiv\! \sup \frac{|v(x,t) \!-\! v(x',t)|}{|x-x'|^{\alpha}}; \\ & |v|_{L}^{(\alpha)} \!\equiv\! |v|_{t,T}^{(\alpha/2)} \!+\! |v|_{x,T}^{(\alpha/2)}; \end{split}$$

when $\alpha = 1$, notations such as $|v|_{x,T}^{(L)}$ are used; $\mathcal{O}_{loc}^{n+L}(\mathcal{D}_{\rho,\theta}) = \{q(\rho,\theta) | q \text{ is defined on } \mathcal{D}_{\rho,\theta}, n \text{-times partially differentiable and its } n \text{-th order derivatives are locally Lipschitz-continuous there}\}$.

Firstly we consider a characteristic curve $\overline{x}(\tau; x, t)$ of (1.1) passing (x, t) and put $x_0(x, t) = \overline{x}(0; x, t)$. If $v \in H^{2+\alpha}(\overline{Q}_T)$ with $v|_{\Gamma_T} = 0$, then the correspondence $(x, t) \mapsto (x_0(x, t), t_0 = t)$ is 1-to-1 from \overline{Q}_T onto \overline{Q}_T and the notation $(x(x_0, t_0), t = t_0)$ is used for the inverse transformation. Thus we have $x = x_0 + \int_0^t \hat{v}(x_0, \tau)d\tau$, where $\hat{v}(x_0, t_0) = v(x(x_0, t_0), t = t_0)$, and we use these notations for other functions without explicit statements from now on. Denoting the inverse matrix $\left(\frac{\partial x}{\partial x_0}\right)^{-1}$ by (g_{ij}) , according to (1.1) we have ((x, t) is used in place of (x_0, t_0) for simplicity) (1.7) $\hat{\rho}(x, t; \hat{v}) = \rho_0(x) \cdot \exp\left[-\int_0^t g_{ij}D_j\hat{v}_i(x, \tau)d\tau\right]$ $(D_j = \partial/\partial x_j)$.

(It is noted that the initial-boundary conditions for $\hat{v}(x,t)$ etc. are the same as those for v(x,t) etc.) Extending $\theta_1 \in H^{2+\alpha}(\Gamma_T)$ to $\theta_1^* \in H^{2+\alpha}(\overline{Q}_T)$ and setting $w_i(x,t) = \hat{v}_i(x,t) - v_{0i}(x)$ (i=1,2,3), $w_4(x,t) = \hat{\theta}(x,t) - \theta_1^*(x,t) + \theta_1^*(x,0) - \theta_0(x)$, from (1.2), (1.3'), (1.4) and the above arguments we derive

(1.8)
$$\begin{cases} D_t w = \mathfrak{A}(x, t, w) D_x^2 w + \mathfrak{B}\left(x, t, w, D_x w, \int_0^t D_x^2 w \, d\tau\right), \\ w(x, 0) = 0, \qquad w|_{\Gamma_T} = 0. \end{cases}$$

Secondly we make the following linear problem correspond with (1.8):

(1.9)
$$\begin{cases} D_t \tilde{w} = \mathfrak{A}(x, t, w) D_x^2 \tilde{w} + \mathfrak{B}\left(x, t, w, D_x w, \int_0^t D_x^2 w d\tau\right), \\ \tilde{w}(x, 0) = 0, \qquad \tilde{w}|_{\Gamma_T} = 0, \end{cases}$$

335

No. 7]

where $\mathfrak{A}, \mathfrak{B} \in H^{\alpha}(\overline{Q}_T)$ and

$$egin{aligned} &w \in \mathfrak{S}_T \!\equiv\! \left\{ w \in H^{2+lpha}(\overline{Q}_T) \!\mid w \!\mid_{arGamma_T} \!\!=\!\! 0, \, \langle w
angle_T^{(2,lpha)} \!\equiv\! \sum_{2r+|s|=0}^2 |D_t^r D_x^s w |_T^{(0)} \ &+ \sum_{|s|=1} |D_x^s w \!\mid_{t,T}^{(a/2)} \! <\! M_1
ight\} \qquad (rac{1}{2} M_1 \in (0, ar{ heta}_0)). \end{aligned}$$

Then there exists $T_1 \in (0, T]$ such that the system (1.9) is uniformly parabolic in Petrowsky's sense in \overline{Q}_{T_1} .

2.1. The Green matrix and its estimates. First of all we consider the problem:

(2.1)
$$\begin{cases} D_t W = \mathfrak{A}(x, t, w) D_x^2 W & \text{in } Q_{\tau,T} = \Omega \times (\tau, T], \\ W|_{t=\tau} = 0, \quad W|_{\Gamma_{\tau,T}} = Z|_{\Gamma_{\tau,T}} & (\Gamma_{\tau,T} = \Gamma \times [\tau, T]), \end{cases}$$

where Z is a fundamental solution for the extended system of (1.9) in R^3 . By a local coordinate $\{\bar{x}\}$, (2.1) is transformed into a system of the same type in a half space $R_+^3 = \{\bar{x}_3 \ge 0\}$. After lengthy calculations, we can check that Lopatinsky's condition for the transformed system is satisfied. Hence the solution G_0 of (2.1) can be constructed and then the Green matrix G is defined by $G = Z - G_0$, which is evaluated as follows, e.g.,

(2.2)
$$|D_t^r D_x^s G(x, t; \xi, \tau; w)|$$

$$\leq C_1^{(r,|s|)}(t-\tau)^{-(3+2r+|s|)/2} \cdot \exp\left[-d_1 \frac{|x-\xi|^2}{t-\tau}\right] \qquad (2r+|s|\leq 2).$$

2.2. Estimates of the bounded solution of a linear problem. (2.3) $\tilde{w}(x,t) = \int_{0}^{t} d\tau \int_{\Omega} G(x,t;\xi,\tau;w) \mathfrak{B}(\xi,\tau,w,D_{\xi}w,\int_{0}^{t} D_{\xi}^{2}w d\tau_{0}) d\xi$ is obviously a solution of (1.9) and we have, e.g., for |s|=1,2(2.4) $|D_{x}^{s}\tilde{w}(x,t)-D_{x}^{s}\tilde{w}(x,t')| \leq C_{2}^{(|s|)}(t-t')^{-(2-|s|+\alpha)/2} \|\mathfrak{B}\|_{T_{1}}^{(\alpha)}$ $(\|\cdot\||_{T}^{(\alpha)}) = |\cdot|_{T}^{(0)} + |\cdot|_{T}^{(\alpha)})$. $C_{2}^{(|s|)}$ are positive functions continuous in $\langle w \rangle_{T_{1}}^{(2,\alpha)}$, T_{1} and initial data and monotonically increasing in each argument. From the estimate of $\|\mathfrak{B}\|_{T_{1}}^{(\alpha)}$ it follows that there exist $T_{2} \in (0, T_{1}]$ and $M_{2}(>0)$ such that

 $(2.5) | D_x^2 \tilde{w} |_{T_2}^{(\alpha)} \leq M_2, \quad \text{or,} \quad \tilde{w} \in \mathfrak{S}_{T_2}^0 \equiv \{ w \in \mathfrak{S}_{T_2} | | D_x^2 w |_{T_2}^{(\alpha)} \leq M_2 \}.$

3. The existence and uniqueness of a bounded solution of (1.8). Let us define a sequence $\{w_n\}$ such that $w_0(x,t)=0$ $(\in \mathbb{S}_T^0)$ and $w_n(x,t)$ be a solution of (1.9) with $w=w_{n-1}\in \mathbb{S}_T^0$. Then the above arguments imply $w_n \in \mathbb{S}_T^0$. According to the estimates of $||\mathfrak{A}(x,t,w_{n-1})-\mathfrak{A}(x,t,w_{n-2})||_T^{(\alpha)}$ and $||\mathfrak{B}(x,t,w_{n-1})-\mathfrak{B}(x,t,w_{n-2})||_T^{(\alpha)}$ and the estimates in the previous section we have, on the basis of the expression that $w_n - w_{n-1}$ satisfies, (3.1) $\langle\!\langle w_n - w_{n-1} \rangle\!\rangle_T^{(2,\alpha)} \leq C_3(T, \langle\!\langle w_{n-1} \rangle\!\rangle_T^{(2,\alpha)} + \langle\!\langle w_{n-2} \rangle\!\rangle_T^{(2,\alpha)})\langle\!\langle w_{n-1} - w_{n-2} \rangle\!\rangle_T^{(2,\alpha)}$ $(\langle\!\langle \cdot \rangle\!\rangle_T^{(2,\alpha)} = \langle \cdot \rangle\!\rangle_T^{(2,\alpha)} + |D_x^2 \cdot |_T^{(\alpha)})$. Since $C_3 \downarrow 0$ as $T \downarrow 0$, we can take $T' \in (0, T]$ such that $C_3(T', 2M_1 + 2M_2) \leq 1$. Thus w_n uniformly converges to $w \in H^{2+\alpha}(\overline{Q}_{T'})$ as $n \to \infty$. From (1.7) it follows that $\hat{\rho}(x,t;w_n+v_0)$ converges to $\hat{\rho}(x,t;w+v_0) \in B^{1+\alpha}(\overline{Q}_{T'})$. Now we have

[Vol. 52,

Theorem 1. For some $T' \in (0, T] \exists_1(w, \rho) \in H^{2+\alpha}(\overline{Q}_{T'}) \times B^{1+\alpha}(\overline{Q}_{T'})$ such that $(w, \hat{\rho})$ satisfis (1.8).

Theorem 2. For some $T' \in (0, T]$, $\exists_1(v, \theta, \rho) \in H^{2+\alpha}(\overline{Q}_{T'}) \times H^{2+\alpha}(\overline{Q}_{T'}) \times B^{1+\alpha}(\overline{Q}_{T'})$ such that (v, θ, ρ) satisfies (1.1), (1.2), (1.3') and (1.5).

References

- [1] Эидельман, С.Д. и С.Д. Ивасишен: Исследование матрицы Грина однородной лараболической граничной задачи. Труды Москов. Мат. Об., 23, 179-234 (1970).
- [2] Itaya, N.: On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluid. Kodai Math. Sem. Rep., 23, 60-120 (1971).
- [3] Serrin, J.: On the uniqueness of compressible fluid motions. Arch. for Rat. Mech. and Anal., 3, 271-288 (1959).
- [4] Солонников, В.А.: О краевых задачах для линейных параболических систем дифференциальных общего вида. Тр. МИАН, **83**, 3-162 (1965).