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117. On the Number of Squares in an
Arithmetic Progression

By Saburd UCHIYAMA
Department of Mathematics, Okayama University, Okayama, Japan

(Communicated by Kenjiro SHODA, M. J. A., Oct. 12, 1976)

Let o and b be arbitrary integers with >0 and 6=0. For any
real number >0 we denote by A(x; a, b) the number of those integers
an+b,0<n<2zx, which are squares of an integer. P. Erdos[1; Problem
16] has conjectured that to every ¢>>0 there corresponds a number x,
=2,(e) such that we have
(1) A(x; a,b)<ex for x> x,.

He also notes there that W. Rudin has conjectured the existence of an
absolute constant ¢>0 such that
(2) A@;a,)<cevz  for x=>1.

Recently, E. Szemerédi [3] has given a very short proof of (1) by
noticing that there are no four squares that form an arithmetic pro-
gression, which is a well-known observation due to L. Euler, and by
appealing to the result of his to the effect that every infinite sequence
of non-negative integers that has positive upper density contains an
arithmetic progression of four elements (cf. [2], and also [4]). How-
ever, the argument in [2] (and in [4] as well) is elementary but by no
means simple, nor straightforward.

1. We shall first give another simple and elementary proof of (1).
There is no loss in generality in assuming that a>b. Every non-
negative integer belongs to one and only one arithmetic progression of
the form an-+b (n=0), where a is fixed and 0=<b<a. Hence we have

:le(x; 0, D) =Wazta—11+1  (x>0)
where [t] denotes the greatest integer not exceeding the real number ¢;
this implies that
A@x;a,D)<vVax+a—1+1 (x>0)

for any @ and b with a>b>=0, since we always have A(x; a, b)=0.
This clearly proves (1).

We plainly have A(x; a, b)=0 (£ >0), if b is a quadratic non-residue
(mod a).

2. Now, given @ and b, we write (&, b) =d=¢€*f, a=da, and b=db,.
Here, (a, b) denotes the greatest common divisor of a and b, and ¢? is
the largest square factor of d, so that f is a squarefree integer. Our
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main result in this note is the following
Theorem. We have for x>0

A(x; a, b)——ﬂ%ﬂ(VW—«/ﬁ)‘g__N(i’ b

where N(k, l) denotes for integers k>0 and | the number of incongruent
solutions u (mod k) of the congruence u*=1 (mod k).
Note. If (k,1)=1 then we have
NG D=2 T (1+(1)),
poflime NP
where 1=0, 1 or 2 according as 2%k, 2|k or 2|k, and (I/p) is the
Legendre symbol for quadratic residuarity. In particular, N(k, )=0
unless ! is a quadratic residue (mod k). Also, we have
N(a, b)=eN(ay, fby);
this follows from the fact that b is a quadratic residue (mod a) if and
only if (f,a,)=1 and fb, is a quadratic residue (mod a,).
Proof of the theorem. We have
A;a,b)= >, 1 > > 1

0snsx %2=p(mod a) m=wu(moda)
an+b=m2 0su<e  vYpsmsvVaz+bd

«/m_g]+[3_ «/E]+1)

”25‘62?0(?:2 ao) ([ efao Qy

a, efa,
—Yaxtb=vby, 1b) +R(a, b),
efa,
where
R, b)= — ( (x/ax+b_2)+1p<_g_~/5))_
172501‘51;32%%(1 @o) efao Qy a, efa,

Here, we have set y(t)=t—[t]—(1/2) for real t. Since |(£)|<1/2 for
all £, we have
(3) |RB(a, b)|S N(ay, fby),
which concludes the proof of our theorem. It seems difficult to give a
finer estimate for R(a, b) than (3).

A crude estimate for N(a,, fb,) is given by

N(ay, fby)=0(af) for any fixed ¢>0,

the O-constant being dependent of . It follows from this that

Az a, b)=0(aa<\/%+1)) (x>0);

this inequality is in general stronger than (2) for large values of x but
it is weaker than (2) for small values of .
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