114. On Holomorphically induced Representations of Exponential Groups

By Hidenori FUJIWARA

(Communicated by Kôsaku YOSIDA, M. J. A., Oct. 12, 1976)

The aim of this note is to generalize to the case of exponential groups the results announced in [2] on holomorphically induced representations of split solvable Lie groups.

1. Let $G = \exp \mathfrak{g}$ be an exponential group (for the definition, see [6] for example) with Lie algebra \mathfrak{g} , f a linear form on \mathfrak{g} , \mathfrak{h} a positive polarization of \mathfrak{g} at f, $\rho(f, \mathfrak{h})$ the holomorphically induced representation of G constructed from \mathfrak{h} and let $\mathcal{H}(f, \mathfrak{h})$ be the space of $\rho(f, \mathfrak{h})$ [1].

In this note, we find a necessary and sufficient condition on (f, \mathfrak{h}) for the non-vanishing of $\mathcal{H}(f, \mathfrak{h})$. We then show that $\rho(f, \mathfrak{h})$ $(\neq 0)$ is irreducible if and only if the Pukanszky condition is satisfied, and that in this case $\rho(f, \mathfrak{h})$ is independent of \mathfrak{h} . For reducible $\rho(f, \mathfrak{h})$, we describe its decomposition into irreducible components.

The details will appear elsewhere.

2. The triple (\mathfrak{k}, j, ρ) consisting of an exponential Lie algebra \mathfrak{k} , a linear operator j and an alternating bilinear form ρ on \mathfrak{k} is called an exponential Kähler algebra if it has the following properties:

- a) $j^2 = -1$, b) [jX, jY] = j[jX, Y] + j[X, jY] + [X, Y],
- c) $\rho(jX, jY) = \rho(X, Y)$, d) $\rho(jX, X) > 0$ for $X \neq 0$,
- e) $\rho([X, Y], Z) + \rho([Y, Z], X) + \rho([Z, X], Y) = 0.$

If, in addition to these properties, there is an linear form ω on \mathfrak{k} such that $\rho(X, Y) = \omega([X, Y])$ for any $X, Y \in \mathfrak{k}$, the triple $(\mathfrak{k}, j, \omega)$ is called an exponential *j*-algebra. By abuse of language we often call the exponential Lie algebra \mathfrak{k} an exponential Kähler algebra or an exponential *j*-algebra.

We generalize the structure theorem of a normal *j*-algebra [4] (resp. a normal Kähler algebra [3]) to an exponential *j*-algebra (resp. an exponential Kähler algebra).

Theorem 1. Let $(\mathfrak{k}, j, \omega)$ be an exponential j-algebra. We define an inner product S on \mathfrak{k} by $S(X, Y) = \omega([jX, Y])$ for X, $Y \in \mathfrak{k}$. Let \mathfrak{a} be the orthogonal complement of $\eta = [\mathfrak{k}, \mathfrak{k}]$ with respect to the form S. \mathfrak{a} is a commutative subalgebra of $\mathfrak{k}, \mathfrak{k} = \mathfrak{a} + \eta$, and the adjoint representation of \mathfrak{a} on η is complex diagonarizable. For $\alpha \in \mathfrak{a}^*$, we set $\eta^{\alpha} = \{X \in \eta; [A, X] = \alpha(A)X$ for all $A \in \mathfrak{a}\}$ and let $\{\eta^{\alpha_i}\}, 1 \leq i \leq r$ be those root spaces η^{α} for which $j(\eta^{\alpha}) \subset \mathfrak{a}$. Then dim $\eta^{\alpha_i} = 1$ and $r = \dim \mathfrak{a}$ (r is called

No. 8]

the rank of \mathfrak{k}). If we order $\alpha_1, \dots, \alpha_r$ in an appropriate way, then all the other real roots are of the form

$$\begin{array}{ll} \displaystyle \frac{1}{2}(\alpha_m + \alpha_k), & \displaystyle \frac{1}{2}(\alpha_m - \alpha_k), & \displaystyle 1 \leq k \leq m \leq r, \\ \displaystyle \frac{1}{2}\alpha_k, & \displaystyle 1 \leq k \leq r \end{array}$$

(not all possibilities need occur), and η can be decomposed as follows: $\eta = \sum_{m>k} \eta^{1/2(\alpha_m - \alpha_k)} + \check{t}_{1/2} + \sum_{m>k} \eta^{1/2(\alpha_m + \alpha_k)},$

where $\mathfrak{t}_{1/2} = \sum_{k} \tilde{\eta}^{1/2\alpha_{k}}$ and $\tilde{\eta}^{1/2\alpha_{k}}$ is an ad α -invariant subspace, the complexification of which is the sum of root spaces of ad α with roots $A \mapsto \frac{1}{2}\alpha_{k}(A)(1+i\beta_{k,p})$ $(A \in \alpha)$ with $\beta_{k,p} \in \mathbb{R}$. Let $\mathfrak{f}_{0} = \alpha + \sum_{m>k} \eta^{1/2(\alpha_{m}-\alpha_{k})}$, $\mathfrak{f}_{1} = \sum_{m>k} \eta^{1/2(\alpha_{m}+\alpha_{k})}$, then $\mathfrak{t} = \mathfrak{t}_{0} + \mathfrak{t}_{1/2} + \mathfrak{t}_{1}$, $[\mathfrak{t}_{i}, \mathfrak{t}_{k}] \subset \mathfrak{t}_{i+k}$, $j(\eta^{1/2(\alpha_{m}-\alpha_{k})}) = \eta^{1/2(\alpha_{m}+\alpha_{k})}$, $r \geq m > k \geq 1$, $j(\hat{\eta}^{1/2\alpha_{k}}) = \hat{\eta}^{1/2\alpha_{k}} r \geq k \geq 1$. Let U_{i} be the nonzero element of $\eta^{\alpha_{i}}$ such that $[jU_{i}, U_{i}] = U_{i}$ and let $s = \sum_{i=1}^{r} U_{i}$. Then $\alpha_{k}(jU_{i}) = \delta_{k,i}$, ad $js|\mathfrak{t}_{0} = 0$, ad $js|\mathfrak{t}_{1}=Id$, ad $js|\mathfrak{t}_{1/2}$ is semisimple and its eigenvalues have the real part $\frac{1}{2}$. We have jX = [s, X] for $X \in \mathfrak{t}_{0}$.

Theorem 2. Let \sharp be an exponential Kähler algebra, then \sharp can be decomposed into a semi-direct sum $\sharp = \mathcal{I} + \mathcal{H}$, where \mathcal{J} is a commutative j-invariant ideal, and \mathcal{H} is an exponential j-algebra.

3. Now we return to the problems stated in §1. For a real vector space V, we denote its dual by V*. For an exponential Lie algebra \mathfrak{t} and $l \in \mathfrak{t}^*$, we denote by $P^+(l,\mathfrak{k})$ the set of positive polarizations of \mathfrak{t} at l. Let $\mathfrak{d} = \mathfrak{h} \cap \mathfrak{g}$, $e = (\mathfrak{h} + \mathfrak{h}) \cap \mathfrak{g}$ and let $\mathfrak{b} = \mathfrak{d} \cap \ker f$. \mathfrak{d} and \mathfrak{b} are ideals of e. Let $\mathfrak{e} = e/\mathfrak{b}$, $\mathfrak{d} = \mathfrak{d}/\mathfrak{b}$, $\pi: e \to \mathfrak{e}$ the projection, $f_0 = f | e \in e^*$, $\mathfrak{h} = \pi(\mathfrak{h})$ and let $\tilde{f} \in (\mathfrak{e})^*$ such that $\tilde{f} \circ \pi = f_0$.

Theorem 3. *ẽ* can be decomposed into a semi-direct sum

$$\tilde{e} = n + m$$
, m : subalgebra, n : ideal,

and this decomposition satisfies the following conditions.

Let $\mathfrak{h}_1 = \tilde{\mathfrak{h}} \cap \mathfrak{n}_c$, $\mathfrak{h}_2 = \tilde{\mathfrak{h}} \cap \mathfrak{m}_c$, $\tilde{f}_1 = \tilde{f} | \mathfrak{n} \in \mathfrak{n}^*$ and let $\tilde{f}_2 = \tilde{f} | \mathfrak{m} \in \mathfrak{m}^*$.

a) \mathfrak{n} is a Heisenberg algebra with center \mathfrak{F} and $\mathfrak{h}_1 \in P^+(\tilde{f}_1, \mathfrak{n})$.

b) $\mathfrak{h}_2 \in P^+(\tilde{f}_2, \mathfrak{m})$ and $\mathfrak{h}_2 + \tilde{\mathfrak{h}}_2 = \mathfrak{m}_c$, $\mathfrak{h}_2 \cap \mathfrak{m} = \{0\}$. We define the linear operator j on \mathfrak{m} by j(X) = -iX if $X \in \mathfrak{h}_2$, j(X) = iX if $X \in \tilde{\mathfrak{h}}_2$. Then $(\mathfrak{m}, j, -\tilde{f}_2)$ is an exponential j-algebra.

4. We use the notations of Theorem 1 applied to m. Let $L_i = \sum_{j>i} \eta^{1/2(\alpha_j - \alpha_i)}$, $L'_i = \sum_{i>j} \eta^{1/2(\alpha_i - \alpha_j)}$, $p_i = \dim L'_i$, $q_i = \dim L_i$, $r_i = \dim \tilde{\eta}^{1/2\alpha_i}$ and let $f_i = \tilde{f}_2(U_i)$, $1 \le i \le r$. Let $W = \ker \tilde{f}_1 \subset \mathfrak{n}$. Then W is invariant under $\operatorname{ad}_{\mathfrak{n}} \mathfrak{m}$, $\operatorname{ad}_{W_c} \alpha$ is diagonalizable and W_c can be decomposed into root

spaces $(W_c)^{\beta}$ with roots of the form $\beta(A) = \pm \frac{1}{2} \alpha_k(A)(1+i\beta'_{k,l})$ $(A \in \mathfrak{a}),$ $\beta'_{k,l} \in \mathbb{R}$ or $\beta = 0$ (not all possibilities need occur). We put $\tilde{W}_c^{ak/2}$ $= \sum_{\beta = 1/2(1+i\beta'_{k,l})\alpha_k} (W_c)^{\beta}$ and put $\tilde{W}^{ak/2} = \tilde{W}_c^{ak/2} \cap W$ $(1 \le k \le r)$. Let t_k $= \dim \tilde{W}^{ak/2} (1 \le k \le r).$

By modifying the result and the method of Rossi-Vergne [5], we obtain the following theorem.

Theorem 4. $\mathcal{H}(f, \mathfrak{h}) \neq \{0\}$ if and only if

$$-2f_i - \left(p_i + 1 + \frac{1}{2}(q_i + r_i + t_i)\right) > 0, \qquad 1 \le i \le r.$$

The last inequality is identical with the result of Rossi-Vergne [5], except the appearance of the term t_i .

5. G acts on \mathfrak{g}^* by the coadjoint representation and thus we have the orbit space \mathfrak{g}^*/G . We denote by O(f) the orbit through f. For each orbit $\sigma \in \mathfrak{g}^*/G$, we denote by $\hat{\rho}(\sigma)$ the equivalence class of irreducible unitary representations of G associated to σ in the sense of Kirillov-Bernat. For each subspace \mathfrak{p} of \mathfrak{g} , we set $\mathfrak{p}^\perp = \{g \in \mathfrak{g}^*; g | \mathfrak{p} = 0\}$. Let $D = \exp \mathfrak{d}$. We say that \mathfrak{h} satisfies the Pukanszky condition if $D.f = f + \mathfrak{e}^\perp$.

Theorem 5. Suppose $\mathcal{H}(f, \mathfrak{h}) \neq \{0\}$. Then $\rho(f, \mathfrak{h})$ is irreducible if and only if \mathfrak{h} satisfies the Pukanszky condition. In this case, $\rho(f, \mathfrak{h}) \simeq \hat{\rho}(O(f))$. In particular, $\rho(f, \mathfrak{h})$ is independent of \mathfrak{h} .

6. We denote by $U(f, \mathfrak{h})$ the set of orbits $\sigma \in \mathfrak{g}^*/G$ such that $\sigma \cap (f + e^{\perp})$ is non-empty open set in $f + e^{\perp}$. For $\sigma \in \mathfrak{g}^*/G$, we denote by $c(\sigma, f, \mathfrak{h})$ the number of connected components of $\sigma \cap (f + e^{\perp})$. Then we have the following theorem, which generalizes the result of M. Vergne [6] for real polarizations.

Theorem 6. If $\mathcal{H}(f, \mathfrak{h}) \neq \{0\}$, then

- a) $U(f, \mathfrak{h})$ is a finite set.
- b) For $\sigma \in U(f, \mathfrak{h}), c(\sigma, f, \mathfrak{h}) \leq +\infty$.
- c) $\rho(f,\mathfrak{h}) \simeq \sum_{\sigma \in U(f,\mathfrak{h})} c(\sigma, f, \mathfrak{h}) \hat{\rho}(\sigma).$

References

- [1] L. Auslander and B. Kostant: Polarization and unitary representations of solvable Lie groups. Invent. Math., 14, 255-354 (1971).
- [2] H. Fujiwara: On holomorphically induced representations of split solvable Lie groups. Proc. Japan Acad., 51, 808-810 (1975).
- [3] G. Gindikin, I. I. Pjateckii-Šapiro, and E. E. Vinberg: Geometry of homogeneous bounded domains. C. I. M. E., 3, 3-87 (1967).
- [4] I. I. Pjateckii-Šapiro: Geometry of Classical Domains and Theory of Automorphic Functions. Gordon and Breach, New York (1969).
- [5] H. Rossi and M. Vergne: Representations of certain solvable Lie groups

on Hilbert spaces of holomorphic functions and the application to the holomorphic discrete series of a semisimple Lie group. J. Func. Anal., 13, 324-389 (1973). [6] M. Vergne: Étude de certaines représentations induites d'un groupe de

Lie résoluble exponentiel. Ann. Éc. Norm. Sup., 3, 353-384 (1970).