113. Degenerate Elliptic Systems of Pseudodifferential Equations

By Hideo SOGA Department of Mathematics, Osaka University (Communicated by Kôsaku YOSIDA, M. J. A., Oct. 12, 1976)

Introduction. Let M be a compact C^{∞} manifold and $A = (a_{ij})_{i,j=1,...,m}$ be a matrix of pseudodifferential operators on M whose symbols, represented by local coordinates, have homogeneous asymptotic expansions (cf. Seeley [4]). Let us consider the equation Au = f on M when A is elliptic outside a C^{∞} submanifold M_0 and degenerate on M_0 . In the present paper we shall study the normal solvability and the subelliptic estimates for a class of equations such that det A_0 (A_0 is the principal symbol of A) has multi-characteristics, while Èskin in [1] has investigated these problems in the case where det A_0 is of principal type. Finally we shall give an example as an application to non-coercive boundary value problems of fourth order.

1. Assumptions and the main theorem. Let the order of a_{ij} be $s_i + t_j$ $(s_i, t_j \in \mathbf{R})$, then A is a continuous operator from $\prod_{j=1}^{m} H_{s+t_j}(M)$ to $\prod_{i=1}^{m} H_{s-s_i}(M)$ $(H_s(M)$ denotes the Sobolev space on M of order s). Let M $(n = \dim M \ge 2)$ be separated into two connected components by a C^{∞} submanifold M_0 . We assume that the ellipticity of A is degenerate on M_0 in the following way.

Let $\{x^i = (x_0^i, \dots, x_{n-1}^i)\}_{i=1,\dots,N}$ be a set of local coordinates covering a neighborhood of M_0 and expressing M_0 by the equation $x_0^i = 0$, and the transition from x^i to x^j in the domain where both x^i and x^j are defined be given by the form $x_0^j = x_0^i$, $x_k^j = \varphi_k^j(x_1^i, \dots, x_{n-1}^i)$, $(k=1, \dots, n-1)$. When A is locally represented in $x^i = (t, y) = (t, y_1, \dots, y_{n-1})$ $(i=1, \dots, N)$, its principal symbol $A_0(t, y; \tau, \eta)$ satisfies the assumptions (I) \sim (IV):

- (I) det $A_0(t, y; \tau, \eta) \neq 0$ when $t \neq 0 \& |\tau| + |\eta| \neq 0$ or $t = 0 \& \tau \neq 0$;
- (II) $A_0(0, y; 0, \eta) = [0]$ (zero-matrix);
- (III) det $\partial A_0/\partial \tau(0, y; 0, \eta) \neq 0$, $|\eta| \neq 0$;

(IV) Set $\tilde{A}_0(t, y; \eta') = \partial A_0/\partial \tau(t, y; 0, \eta')^{-1} \cdot A_0(t, y; 0, \eta')(\eta' = \eta/|\eta|)$. There exist positive integers k_1, \dots, k_l such that the following decomposition of \tilde{A}_0 is possible: $t^{-k_1}\tilde{A}_0(t, y; \eta')$ is smooth on t=0 and has simple eigenvalues $\lambda_1^1(t, y; \eta'), \dots, \lambda_{m_1}^1(t, y; \eta')$ with non-vanishing imaginary parts. Other eigenvalues all vanish as $t \to 0$. Let $P_j^1(t, y; \eta')$ be the projection $(2\pi i)^{-1} \oint (\lambda - t^{-k_1}\tilde{A}_0)^{-1}d\lambda$ for the eigenvalue $\lambda_j^1(t, y; \eta')$. Next for $t^{-k_2-k_1}\tilde{A}_0(I - \sum_{j=1}^{m_1} P_j^1)$ the same statements hold. We can H. SOGA

continue such a decomposition one after another, and finally have

$$t^{-k_{1}-k_{1-1}-\cdots-k_{1}}\widetilde{A}_{0}\left(I-\sum_{j=1}^{m_{1}}P_{j}^{1}\right)\cdots\left(I-\sum_{j=1}^{m_{l}}P_{j}^{l}\right)=[0]$$

where P_j^i is the projection for the eigenvalue λ_j^i which is obtained in each step. We assume that the above k_1, \dots, k_l and m_1, \dots, m_l are all independent of a choice of x^i .

Theorem 1. If k_1, \dots, k_l are all even integers, we have

(i) $\sum_{i=1}^{m} \|u_i\|_{s+t_i-s_0} \leq C\{\sum_{i=1}^{m} \|(Au)_i\|_{s-s_i} + \sum_{i=1}^{m} \|u_i\|_{s+t_i-1}\},\ u = (u_1, \dots, u_m) \in \prod_{i=1}^{m} H_{s+t_i}(M) \quad (s \in \mathbf{R})$

where $\varepsilon_0 = (k_1 + \cdots + k_l)/(k_1 + \cdots + k_l + 1)$ and $\|\cdot\|_s$ denotes the norm of $H_s(M)$.

(ii) The operator $A: \prod_{i=1}^{m} H_{s+t_{i-s_0}}(M) \to \prod_{i=1}^{m} H_{s-s_i}(M)$ is of Fredholm type.

2. An outline of the proof of Theorem 1. It is easily seen that we have only to analyse the symbol $A'_0(x;\xi)=A_0(x;\xi/|\xi|)|\xi|$ $(x=(t,y),\xi=(\tau,\eta))$. We write

 $A_0'(x;\tau,\eta)\theta(\tau,\eta) = A_0'(x;0,\eta)\theta(0,\eta) + A_0^{(1)}(x;\tau,\eta)\tau$

where $\theta(\xi) \in C^{\infty}(\mathbb{R}^n)$ is equal to 0 if $|\xi| \leq 1/2$ and to 1 if $|\xi| \geq 1$.

Lemma 1. i) For all multi-indices α , β we have

 $|(\partial/\partial x)^{\alpha}A_{\mathfrak{d}}^{(1)}(x\,;\,\xi)| \leq C_{\mathfrak{a}}, \quad \xi \in \boldsymbol{R}^{n}, \quad x \in U_{\mathfrak{s}_{1}} = \{(t,\,y)\,;\, |t| \leq \varepsilon_{\mathfrak{l}}, |y| \leq \varepsilon_{\mathfrak{l}}\}\,;$

 $|(\partial/\partial x)^{\alpha}(\partial/\partial \xi)^{\beta}A_{0}^{(1)}(x\,;\,\xi)| \leq C_{\alpha\beta}(1+|\xi|)^{-1}, \quad (|\beta|\geq 1), \quad x\in U_{*}, \quad \xi\in \mathbf{R}^{n}.$

ii) When $\varepsilon > 0$ is small enough, we have

 $|\det A_0^{\scriptscriptstyle (1)}(t,y\,;\,\xi)|{\geq}\delta{\geq}0, \quad |t|{<}arepsilon, \quad |\xi|{\geq}2.$

By this lemma it suffices to examine the operator $D_t + \tilde{A}_0(x; D_y/|D_y|)$ $\cdot |D_y| \theta(0, D_y) (D_x = (-i\partial/\partial x))$. From the assumption (IV) we can construct the diagonalizer of \tilde{A}_0 :

Lemma 2. There exist a finite open covering $\{V_a\}$ on $\{\eta; |\eta|=1\}$ and a set of functions $N_a(x; \eta) \in C^{\infty}(U_{\epsilon_1} \times V_a)$ such that for any $(x, \eta) \in U_{\epsilon_1} \times V_a$ (i) det $N_a(x; \eta) \neq 0$ and

(ii)
$$N_{\alpha}(x;\eta)\tilde{A}_{0}(x;\eta)$$

$$= \begin{pmatrix} t^{k_{1}}\lambda_{1}^{1}(x;\eta) & 0 \\ & \ddots & \\ & t^{k_{1}}\lambda_{m_{1}}^{1}(x;\eta) & \\ & & \ddots & \\ 0 & & t^{k_{1}+\dots+k_{l}}\lambda_{m_{l}}^{l}(x;\eta) \end{pmatrix} N_{\alpha}(x;\eta)$$

Thus we can reduce the problem to the properties of the scalar operator $D_t + t^{2k}\lambda(x; D_y)$, which are well known (cf. [2], [5], etc.).

3. An application to boundary value problems. Let Ω be a bounded open set in \mathbb{R}^n $(n \ge 3)$ with a smooth boundary Γ and Γ be separated into two connected components by a smooth submanifold Γ_0 . Suppose that ν_1, ν_2 are real vector fields in \mathbb{R}^n defined on Γ of the same

type as stated in §1 of [5] and that the directions of their tangential components to Γ coincide near Γ_0 . We assume that $(\nu_i(x), n(x))$ (n(x))is the inner normal unit vector to Γ) converges to zero of order $2k_i$ as dis $(\Gamma_0, x) \rightarrow 0$. Let $L(x, D_x)$ be an elliptic differential operator of fourth order on $\overline{\Omega}$ with smooth coefficients. We assume that the equation $L_0(x, \zeta + \omega n(x)) = 0$ $(x \in \Gamma)$ in ω $(L_0$ denotes the principal part of L and ζ is any vector $(\neq 0)$ parallel to Γ) has the roots $\omega_1^+(x, \zeta), \omega_2^+(x, \zeta)$ whose imaginary parts are positive and real parts vanish. Let us consider the non-coercive boundary value problem

(3.1)
$$\begin{cases} L(x, D_x)u = f & \text{in } \mathcal{Q}, \\ \partial^2 u / \partial \nu_2 \partial n = g_2 & \text{on } \Gamma, \\ \partial u / \partial \nu_1 = g_1 & \text{on } \Gamma. \end{cases}$$

Set $M = \Gamma$, $M_0 = \Gamma_0$. Then we see that the Lopatinski matrix (cf. [3]) of (3.1) near Γ_0 satisfies all of the assumptions (I)~(IV) in some appropriate local coordinates provided that

(3.2) $|(\nu_1/|\tilde{\nu}_1|, n)| \leq |(\nu_2/|\tilde{\nu}_2|, n)| \text{ near } \Gamma_0 \text{ and}$

 ω_1^+, ω_2^+ are distinct on Γ_0 if $k_1 = k_2$,

where $\tilde{\nu}_i$ denotes the component of ν_i parallel to Γ .

Theorem 2. Let (3.1) be coercive outside Γ_0 and (3.2) hold, then we have for any $s \ge 0$

i) $\|u\|_{s+4-s_0,\Omega} \leq C\{\|Lu\|_{s,\Omega} + \|\partial^2 u/\partial\nu_2 \partial n\|_{s+3/2,\Gamma}$

 $+ \|\partial u/\partial \nu_1\|_{s+5/2,\Gamma} + \|u\|_{s+3,\Omega}, \qquad u \in H_{s+4}(\Omega),$

where $\varepsilon_0 = 2k_1/(2k_1+1)$ and $\|\cdot\|_{s,\rho}$, $\|\cdot\|_{s',\Gamma}$ denote the norms of $H_s(\Omega)$, $H_{s'}(\Gamma)$;

ii) The operator $u \mapsto (Lu, \partial^2 u / \partial \nu_2 \partial n|_{\Gamma}, \partial u / \partial \nu_1|_{\Gamma})$ is of Fredholm type from $H_{s+4-\epsilon_0}(\Omega)$ to $H_s(\Omega) \times H_{s+3/2}(\Gamma) \times H_{s+5/2}(\Gamma)$.

References

- [1] Eskin, G. I.: Degenerate elliptic pseudodifferential equations of principal type. Math. USSR Sb., 11, 539-582 (1970).
- [2] Kumano-go, H., and Taniguchi, K.: Oscillatory integrals of pseudo-differential operators on Rⁿ and operators of Fredholm type. Proc. Japan Acad., 49, 397-402 (1973).
- [3] Lions, J. L., and Magenes, E.: Non Homogeneous Boundary Value Problems and Applications. I. Springer-Verlag, Berin (1972).
- [4] Seeley, R. T.: Topics in pseudo-differential operators. Pseudo-Diff. Operators (C. I. M. E., Stresa 1968), Edizioni Cremonese, Rome, 169-305 (1969).
- [5] Soga, H.: Boundary value problems with oblique derivative. Publ. Res. Inst. Math. Sci. Kyoto Univ., 10, 619-668 (1975).