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Introduction. Let M be a compact C~ manifold and A
=(Wsy)s,5=1,...,m D€ & matrix of pseudodifferential operators on M whose
symbols, represented by local coordinates, have homogeneous asymp-
totic expansions (cf. Seeley [4]). Let us consider the equation Au=f
on M when A is elliptic outside a C* submanifold M, and degenerate
on M,. Inthe present paper we shall study the normal solvability and
the subelliptic estimates for a class of equations such that det 4, (4,
is the principal symbol of A) has multi-characteristics, while ¥skin in
[1] has investigated these problems in the case where det 4, is of
principal type. Finally we shall give an example as an application to
non-coercive boundary value problems of fourth order.

1. Assumptions and the main theorem. Let the order of a;; be
8;+1t;(s;t;€ R), then A is a continuous operator from [[7., H,, (M)
to [y H,_,, (M) (H(M) denotes the Sobolev space on M of order s).
Let M (n=dim M =2) be separated into two connected components by
a C~ submanifold M,, Weassume that the ellipticity of A is degenerate
on M, in the following way.

Let {xt=(x}, - -+, 2%_D}iy,...,y be a set of local coordinates covering
a neighborhood of M, and expressing M, by the equation z{=0, and the
transition from z? to 2’ in the domain where both «* and 2’ are defined
be given by the form z{=uxi, vi=¢l@s, ---, 2, ), (k=1, .., n—-1).
When A is locally represented in x'=(, )=, ¥, - - > Yn_y) @=1, ---,
N), its principal symbol A(t, ¥ ; 7, 5) satisfies the assumptions (I) ~(IV):

(I) detAyt,y;7,7)x0when tx0 & |]|+|y|x0 or =0 & zx0;

(II) A\0,¥;0,7)=[0] (zero-matrix);

(III) det 6A~0/5f(0, Y5 0,70, |7|x0;

(AV) Set Ayt,u; 1) =04:/3c(t, u; 0,7)7 - Ayt 45 0, 7)) = 7/[7).
There exist positive integers k,, - - -, k; such that the following decom-
position of A, is possible: t-*A (¢, y; 7’) is smooth on ¢t=0 and has
simple eigenvalues Ai(¢, v ; 1), - - -, 24,(&, ¥ ; ") with non-vanishing imagi-
nary parts. Other eigenvalues all vanish as £—0. Let Pi(¢,¥y; 7)) be

the projection (2z%)7! § (Z—t‘klﬁo)‘ldz for the eigenvalue 2j(t,¥; 7).
Next for t-* A (I—>™, P!) the same statements hold. We can
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continue such a decomposition one after another, and finally have
t-kz-kz~1—~--hﬁo(1_ b3 P})- (-5 P})=[0]
= =
where P% is the projection for the eigenvalue 2% which is obtained in
each step. We assume that the above k, .-, %, and m,, ---,m, are
all independent of a choice of x¢.
Theorem 1. If k, ---,k, are all even integers, we have
(1) 2201 elloregmeg = OO0 1AW [lomsy+ 20750 1% s 241}
u=(u1: e yum) € ngn;l Hs+zt(M) (seR)
where e,="Fk+ - -+ k) [ (ky+ - - - + ki +1) and ||-|; denotes the norm of
H/(M).

(ii) Theoperator A: |7 Hy oy o (M)—[]7H,_ (M) is of Fredholm
type.

2. An outline of the proof of Theorem 1. Itis easily seen that we
have only to analyse the symbol Al(x; &)=A.x; &/|EDIE] (x=(, ), &
=(z,7)). We write

A ; 7, )z, P=Ayx; 0,700, )+ AP (x5 7, Pt
where 6(¢) € C=(R") is equal to 0 if |£|<1/2 and to 1 if |&|=1.

Lemma 1. i) For all multi-indices «, 8 we have

|@/02)"AP(w; &|<C., &eR", xecU, ={EW;t|<e,|y|<e};
|0/00)@/08V AP ; ©)<C.A+1ED7, (A=), zeU,, £cR

il) When ¢>0 is small enough, we have

|det AP(E, ¥; 8)|=0>0, [t[<e, (Ewel,, [§=2.
By this lemma it suffices to examine the operator D,+ A« ; D,/|D,)
-|D,| 60, D,) (D,=(—19/0x)). From the assumption (IV) we can con-
struct the diagonalizer of A4,:

Lemma2. Thereexista finite open covering {V,} on {y;|y|=1} and
a set of functions N (x;7) e C(U,XV,) such that for any (x,7) e U,,
XV, (i) det N,(x; 7)=0 and

() N.@;nA; )

thai(x ;) 0

Il

th 2, (x5 ) N (z; ).

L 0 gt (@5 )
Thus we can reduce the problem to the properties of the scalar operator
D+ t*2(x ; D,), which are well known (cf. [2], [5], etc.).

3. An application to boundary value problems. Let £ be a
bounded open set in R™ (n=3) with a smooth boundary I" and I" be
separated into two connected components by a smooth submanifold I',.
Suppose that v,, v, are real vector fields in R* defined on I" of the same



No. 8] Degenerate Elliptic Systems 419

type as stated in § 1 of [5] and that the directions of their tangential
components to I coincide near I',, We assume that (v;(x), n(x)) (n(x)
is the inner normal unit vector to I") converges to zero of order 2k, as
dis (I, £)—0. Let L(x, D,) be an elliptic differential operator of fourth
order on 2 with smooth coefficients. We assume that the equation
L2, L+ on(x)=0 (x e ') in o (L, denotes the principal part of L and ¢
is any vector (x0) parallel to I") has the roots o7 (%, ), wi (2, ) whose
imaginary parts are positive and real parts vanish. Let us consider the
non-coercive boundary value problem
Lz, D)u=f in 0,
3.1) {am/ayzafn=g2 on [,
oujov, =g, on [
Set M=I", M\=1I",. Then we see that the Lopatinski matrix (cf. [3]) of
(3.1) near I', satisfies all of the assumptions (I)~(IV) in some ap-
propriate local coordinates provided that
3.2) (/15115 n)lél (1:'2/|f’2|, n)| near Iy and
wt,0s are distinet on Iy if k,=Fk,,
where 9, denotes the component of v; parallel to I.
Theorem 2. Let (8.1) be coercive outside I'y and (3.2) hold, then
we have for any s=0
i) “u“8+4—ao,9 S C{|Lulls, o +110%/9v,070 |ls 72,
+ “au’/ayl ”s+5/2,1’ + ”u”s-x-s,t): ue Hs+4(9)’
where ey=2k, [ (2k,+1) and ||-|is, 05|l |ls, r denote the norms of H (), H (I");
ii) The operator u—s(Lu, 0*u/dv,0n|., 0u/0v,|r) is of Fredholm type
from Hs+4_,o(.Q) to Hs(.Q) X Hs+3/2(r) X Hs+5/2(F)-
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