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112. On Nonlinear Evolution Equations with a
Difference Term of Subdiferentials

By Yoshiharu KoI* and Jiro WATANABE**)

(Communicated by Ksaku YOSIDA, M.Z.A., Oct. 12, 1976)

1. Introduction. Let be lower semicontinuous convex func-
tion on a real Hilbert space H into (--c, c] with c. We define
the subdifferentiM 39 of by 3(v)--{w e H; (u)>=(v)/(u--v, w) for
all u e H} for each v e H. We set D()--(v e H; (v) c} and D(3)
--(v e H; O(v)). For ech v e D(), 0(v) denotes the uniquely
determined element of least norm in 3(v). Let be another lower
semicontinuous convex function on H into (--, c] with c. We
write J(v)=(v)-(v) for all v e D().

Let us consider the nonlinear evolution equation
( 1 ) du(t) / dt +9(u()) (u()) f(), > 0
with the initiM condition
( 2 ) u(0) =a.

We assume that and satisfy the following conditions (I) and (II).
(I) D(9)

_
D(3+).

(II) If B is a bounded subset of D(9) such that J is bounded from
above on B, then B is relatively compact in H ando is bounded on B.

In this paper we will show that conditions (I) and (II) are sufficient
for the local existence of solutions of the initial value problem (1), (2).
We will also prove extension theorems or solutions. Recently M. Otani
dealt with the initial value problem (1), (2) under certain assumptions
which are sufficient or the global existence of solutions. Otani’s con-
ditions on and are different from ours.

In another paper we will discuss applications to the initial boundary
value problems or nonlinear parabolic equations treated by Tsutsumi
[2].

2. Local existence theorem. Let I be an interval in (--c, c).
We denote by Loo(I;H) the space of all H-wlued strongly measurable
unctions g on I such that

IIg(t) dt<
K

for all compact interval K in I. When --c r s c, we write
L(r, s H) instead of Loo([r, s] H).

Definition, Let u be an H-valued continuous function on [0, S)
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and let f e L(0, T; H), where OS<=T. We say u is a strong solution
of the problem (1), (2) on [0, S), if u has the ollowing properties"

(i) u(t) e D() for almost all t e (0, S)
(ii) there exist g and h in Lo([0, S);H) such that g(t)e 3(u(t))

and h(t)e 3(u(t)) almost everywhere in (0, S) and

(3) u(t)=a+.Io [f(s)--g(s)+ h(s)]ds

holds for all t e [0, S).
Remark 1o If u is a strong solution of the problem (1), (2) on

[0, S), then (u(t)) and 4x(u(t)) are absolutely continuous on [0, r] or any
r e (0, S) and

( 4 ) J(u(t))--J(a)--.[to (f(s)--u’(s), u’(s))ds

holds for all t e [0, S), where u’(s) denotes du(s)/ds. Cf. Brezis
[1, Lemme 3.3].

Now we state a local existence theorem.
Theorem 1. Suppose conditions (I) and (II) are satisfied. Let

a e D() and f e L(O, T;H). Then there exists at least one strong
solution u of the problem (1), (2) on [0, S) for some S e (0, T].

Remark 2. The strong solution u of the problem (1), (2) is not
necessarily unique. For an example of non-uniqueness, let us take H
=R (set o real numbers), --0 and 4z(v)=lvlq/q (v e R), where 1q2.
Then and satisfy conditions (I) and (II). When f0, the equation
(1) reduces to the ordinary differential equation u’--lu]-u. It is well-
known that the solution u of this equation with the initial condition
u(0)=0 is not unique.

Fromnow on in this paper we always assume that conditions (I)
and (II) are satisfied and we fix arbitrarily an a eD() and an

f e L(0, T; H).
:. Proof of Theorem 1. For all 20 and all v e H we write J(v)

=(v)--(v) where (v)=mine [(y)+lly-vll/(2,D]. Note that J(v)
<=J(v)_<J,(v) when v e D() and 0=</.

Let us consider the initial value problem
( 5 ) du/dt +(u)--3(u) f(t), O< t < T
( 6 ) u(0) a.
For each 20 there exists a uniquely determined strong solution u of
the problem (5), (6). See, e.g., Brezis [1, Proposition 3.12] or Watanabe
[3, Theorem 1.1]. Then, by (4), we get

(7) o ’u’ ds+J(u(t))=So (f u)ds+J(a), O<=t<__T.

Lemma 1. Let B be the set {u(t)eH; 021, O<=t<=T and
J(u(t)) >=r} where r is a real number. Then B is relatively compact
in H and o is bounded on B.
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Proof. From (7) we can show easily that B is bounded and that
J is bounded from above on B. Then the assertion ollows from the
assumption (II).

Lemma 2. If rJ(a), then there exists an S e (0, T] such that
( 8 ) J(u(t))r when O<_t<_S and 021.

Proof. Assume that there exists a sequence {(t, )}. in (0, T]
(0, 1) satisfying sup J(u(t))<=r and lim t=0. Then J(u.(O))

>=J(a)>r>=J.(u(t)). Since J(u(t)) is continuous in [0, T] (see
Remark 1), we may assume that J(u(t))=r is satisfied or all n.
Then, by (7), we get easily

C-_-sup llu(s)llds<oo

and so Ilu(t)-a]<=/C, which implies limnU.(t)=a because
lim t=0 by assumption. Since sup J(u(t)) <= r, it tollows rom
(II) that {3q(u(t))} is bounded. Hence we have sup
<oo, because 113q(v)1<_-13q(v)ll or all v eD(). Therefore we
obtain
( 9 ) lim (3.(u(t)), a-u(t))=O.

On the other hand we have
J(a) r=J(a) J.(u(t))

<__ (a) --p(u.(t,)) (3+.(u.(tn)), a-- u.(t,)).
Combining this with (9), we get

J(a)--r<= o(a)-- lim in (u.(t,)).

While the left-hand side of this inequality is positive by assumption,
the right-hand side is non-positive by the lower semicontinuity of o.
This is a contradiction. The proof is complete.

End of the proof of Theorem 1. Let rJ(a). Then, by Lemma
2, we can choose an S e (0, T] satisfying (8). We set B ={u(t) e H;
0(21 and 0__< t <__S). Then it ollows rom Lemma 1 that B is rela-
tively compact in H and that II3q(u(t))[l_<_supe I[3q(v) I1( oo holds for
all 2 e (0, 1) and all t e [0, S]. We write
(10) g(t)-f(t)+3(u(t))-u(t), 2>0, O=t=S.
Since {u}0<<l is bounded in L2(O,S;H), {g}0<<l is also bounded in
L(O, S;H). Then we can choose a sequence 20 with the ollowing
properties" (i) u converges to a continuous unction u uniformly on
[0, S] and (ii) q(u.) (respectively g) converges weakly to an h (respec-
tively a g) in L(0, S; H). Then we have h(t) e q(u(t)) and g(t) e (u(t))
almost everywhere in (0, S) (see Brezis [1, Proposition 2.16]). Integrat-
ing with respect to t both sides of (10) with 2=2 and making n-oo,
we obtain (3) or all t e [0, S]. Hence u is a strong solution o (1), (2)
on [0, S]. The proo is complete.

4. Extension Theorem. Throughout this section we assume that
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U is a strong solution of the initial value problem (1), (2) on [0, S) for
some S (0, T). We have the following extension theorem.

Theorem 2. If J(u(t)) is bounded from below on [0, S), then u can
be continued to the right of S as a strong solution of the problem (1),
(2).

Proof. By (4) we get easily u’ e L(0, S H). Hence u(t) converges
to a v in H as t/IS. In view of Theorem 1 it is sufficient or the proof
of the theorem to show v e D(). By (4) again, we can show easily that
J(u(t)) is bounded 2rom above in [0, S). Hence, by the assumption (II),
4x(u(t)) is bounded in [0, S). Then, since

(u(t)) =J(u(t)) + (u(t))
<=J(u(t)) +(a) + (u(t)) --a, (u(t))

for all t e [0, S), it follows that (u(t)) is bounded from above in [0, S).
Therefore (v)_lim inft/s (u(t)) c, that is, v e D(). This completes
the proof.

In view of Theorem 2 and Remark 1, we can prove easily the
ollowing

Theorem 3. We have lim/s J(u(t))---, if and only if u cannot
be continued to the right of S as a strong solution of the problem (1),
(2).
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