136. The Concrete Description of the Colocalization

By Masahisa SATO
Department of Mathematics, Tokyo University of Education
(Communicated by Kenjiro Shoda, M. J. A., Nov. 12, 1976)

Introduction. Recently K. Ohtake [5] proved that for a torsion theory $(\mathcal{I}, \mathcal{F})$ there is a colocalization functor if and only if \mathcal{F} is a TTF-class, in this case we have another torsion theory $(\mathcal{F}, \mathcal{D})$ and T. Kato [2], K. Ohtake [5] proved that there is an equivalence between the colocalization subcategory [C] of Mod-R with respect to $(\mathcal{I}, \mathcal{F})$ and the localization subcategory [L] of Mod-R with respect to $(\mathcal{F}, \mathcal{D})$.

In this paper, we shall show a colocalization of any module M_R can be obtained by $M \otimes_R I \otimes_R I$ concretely where I is a corresponding two sided ideal, i.e. the unique minimal ideal belonging to the filter which corresponds to $(\mathcal{F}, \mathcal{D})$.

As an application of this, we get self-contained and fairly simple proofs of the results in [5].

The concrete description of the colocalization. Throughout this paper, ring R means an associative ring with unit, Mod-R (resp. R-Mod) denotes a class of all unital right (resp. left) R-modules and (\mathcal{A} , \mathcal{B}) (resp. (\mathcal{A}^* , \mathcal{B}^*)) denotes a torsion theory in Mod-R (resp. R-Mod), about which the reader is referred to [6].

Let $(\mathcal{A}, \mathcal{B})$ be a torsion theory. A module M_R is called "divisible" if $Ext_R^1(K, M) = 0$ for any $K \in \mathcal{A}$, dually "codivisible" if $Ext_R^1(M, K) = 0$ for any $K \in \mathcal{B}$, and a map $M_R \xrightarrow{f} L(M)_R$ (resp. $C(M)_R \xrightarrow{f} M_R$) is called "localization" of M_R (resp. "colocalization" of M_R) if ker (f), cok $(f) \in \mathcal{A}$, $L(M)_R \in \mathcal{B}$ and L(M) is divisible (resp. ker $(f) \in \mathcal{B}$, cok $(f) \in \mathcal{B}$, $C(M) \in \mathcal{A}$ and C(M) is codivisible).

[L], [C] denote the full subcategory of torsion-free divisible modules in Mod-R and torsion codivisible modules in Mod-R which are called localization subcategory and colocalization subcategory with respect to $(\mathcal{A}, \mathcal{B})$ respectively.

Let I be a two sided idempotent ideal and $\mathcal{G}=\{M_R\in\operatorname{Mod-}R\,|\,M\cdot I=0\}$, then \mathcal{F} is TTF-class in the sense of Jans [1]. (i.e. closed under taking submodules, extensions and direct products). Any TTF-class in Mod-R is obtained as above, in this case corresponding torsion class and torsion-free class are $\mathcal{I}=\{M_R\,|\,M\cdot I=M\}$ and $\mathcal{D}=\{M_R\,|\,\operatorname{Ann}_M(I)=0\}$ respectively. (i.e. $(\mathcal{I},\mathcal{F}),(\mathcal{F},\mathcal{D})$ are torsion theories.) The corresponding filter with respect to $(\mathcal{F},\mathcal{D})$ is $\mathcal{J}=\{J_R\,|\,J_R$ is a right ideal which

contains I} and torsion submodule of M_R with respect to $(\mathcal{I}, \mathcal{I})$ is $M \cdot I$. (see [1]). Any TTF-theory in R-Mod denoted by $(\mathcal{I}^*, \mathcal{I}^*)$, $(\mathcal{I}^*, \mathcal{I}^*)$ is defined by the same way. These notations are maintained throughout this paper.

Localization functor with respect to $(\mathcal{F}, \mathcal{D})$ is represented by L(-) = $\operatorname{Hom}_R(I_R, \operatorname{Hom}_R(I_R, -)_R) = \operatorname{Hom}_R(I \otimes_R I_R, -)$. (See [6], by a simple calculation of operator, new operation of R to $\operatorname{Hom}_R(I_R, -)$ coincides with the origin.) On the other hand, for the formulation of the colocalization, we get the following theorem.

Theorem 1. Colocalization functor with respect to $(\mathcal{F}, \mathcal{F})$ is obtained by $C(-) = - \otimes_R I \otimes_R I(C(M_R) \xrightarrow{f} M$ is canonical). Particularly $C(R) = I \otimes_R I$.

Proof. We show that $M \otimes_R I \otimes_R I \xrightarrow{f} M$ where $f(\sum m \otimes i_1 \otimes i_2) = \sum m i_1 i_2 \in M$, $i_1, i_2 \in I$ is a colocalization of M. In the proof we will omit the suffix to avoid the unnecessary confusion. Let $\sum m \otimes i_1 \otimes i_2 \in \ker(f)$, $i_1, i_2 \in I$ and $m \in M$, i.e. $\sum m i_1 i_2 = 0$. We can write $i = \sum j_1 j_2$, $j_1, j_2 \in I$ for any $i \in I$ since $I^2 = I$, so $(\sum m \otimes i_1 \otimes i_2) i = \sum m \otimes i_1 \otimes (i_2 j_1 j_2) = \sum (\sum m i_1 i_2) \otimes j_1 \otimes j_2 = 0$. Hence $\ker(f) I = 0$ so $\ker(f) \in \mathcal{F}$. It is clear $\operatorname{cok}(f) = M / MI \in \mathcal{F}$, $M \otimes_R I \otimes_R I \in \mathcal{I}$.

We shall show $M \otimes_R I \otimes_R I$ is codivisible. Let $0 \longrightarrow A_R \longrightarrow B_R \stackrel{t}{\longrightarrow} C_R \longrightarrow 0$ be an exact sequence in Mod-R such that $A_R \in \mathcal{F}$, then we have exact sequences and natural isomorphisms

$$0 = \operatorname{Hom} (M \otimes_R I \otimes_R I_R, A_R) \longrightarrow \operatorname{Hom} (M \otimes_R I \otimes_R I_R, B_R)$$

$$0 = \operatorname{Hom} (M \otimes I, \operatorname{Hom} (I, A)) \longrightarrow \operatorname{Hom} (M \otimes I, \operatorname{Hom} (I, B))$$

$$\longrightarrow \operatorname{Hom} (M \otimes_R I \otimes_R I_R, C_R)$$

$$0 = \operatorname{Hom} (M \otimes_R I \otimes_R I_R, C_R)$$

$$0 = \operatorname{Hom} (M \otimes_R I \otimes_R I_R, C_R)$$

$$0 = \operatorname{Hom} (M \otimes_R I \otimes_R I_R, C_R)$$

$$0 = \operatorname{Hom} (M \otimes_R I \otimes_R I_R, C_R)$$

$$0 = \operatorname{Hom} (M \otimes_R I \otimes_R I_R, C_R)$$

since $I \in \mathcal{I}$, $A \in \mathcal{F}$ where $h = \text{Hom } (M \otimes_R I, \text{Hom } (I, t))$.

We must verify h is an epimorphism. Let $g: M \otimes_R I_R \to \operatorname{Hom}_R(I,C)_R$ be any R-homomorphism, $M \otimes_R I \in \mathcal{I}$ hence $\operatorname{Im}(g) \in \mathcal{I}$ so $\operatorname{Im}(g) \subset \operatorname{Hom}_R(I,C)I$. Hence to show this we prove $p = \operatorname{Hom}(I,t) \mid \operatorname{Hom}(I,B)I$ is an isomorphism onto $\operatorname{Hom}(I,C)I$. Clearly $\operatorname{Hom}(I,t)$ is monomorphism, so is p. Let $\sum yi \in \operatorname{Hom}(I,C)I$ where $y \in \operatorname{Hom}(I,C)$, $i \in I$. We can write $i = \sum i_1 i_2, i_1, i_2 \in I$ for $I^2 = I$. Consider the map $yi_1: I_R \to C_R$ and $yi_1(j) = y(i_1j) = y(i_1j)$ for $j \in I$. Since $y(i_1) \in C$ and t is an epimorphism, there is $b_{i_1} \in B$ such that $t(b_{i_1}) = y(i_1)$. So we define $k_{i_1}: I_R \to B_R$ such that $k_{i_1}(j) = b_{i_1} \cdot j$ for any $j \in I$, then $t \cdot k_{i_1}i_2(j) = t \cdot k_{i_1}(i_2 \cdot j) = t(b_{i_1} \cdot i_2j) = t(b_{i_1})i_2j = y(i_1)i_2j = y \cdot i_1i_2(j)$ for any $j \in I$, hence $t \cdot k_{i_1}i_2 = y \cdot i_1i_2$ so we put $q_i = \sum k_{i_1} \cdot i_2$ then $q_i \in \operatorname{Hom}(I,B)I$ and $tq_i = \sum tk_{i_1}i_2 = \sum yi_1i_2 = y(\sum i_1i_2) = yi$, that is $\sum yi = t(\sum q_i)$, $\sum q_i \in \operatorname{Hom}(I,B)I$, which means p is an

epimorphism, so is h, as was to be shown.

Localization and colocalization functors are unique up to the isomorphism if they exist (see [3], [4], [6]), therefore identity map $C(M) \rightarrow C(M)$ is a colocalization of C(M), hence $C(C(M)) \cong C(M)$ so we get the following lemma.

Lemma 2. $M \otimes_R I \otimes_R I \otimes_R I \otimes_R I \xrightarrow{f} M \otimes_R I \otimes_R I$ is an isomorphism where I is any two sided idempotent ideal and $f(\sum m \otimes i_1 \otimes i_2 \otimes i_3 \otimes i_4) = \sum m \otimes i_1 \otimes i_2 \cdot (i_3 i_4)$. Particularly $_R(I \otimes_R I) \otimes_R (I \otimes_R I)_R \cong_R I \otimes_R I$.

Using above results, we get the next theorem immediately. (2)–(5) have been proved in [5].

Theorem 3. Let I be a two sided idempotent ideal, $(\mathfrak{I}, \mathfrak{F})(\mathfrak{F}, \mathfrak{D})$; $(\mathfrak{I}^*, \mathfrak{F}^*)(\mathfrak{F}^*, \mathfrak{D}^*)$ corresponding torsion theories, C, C^* ; L, L^* localization and colocalization functors with respect to $(\mathfrak{I}, \mathfrak{F})(\mathfrak{I}^*, \mathfrak{F}^*)$; $(\mathfrak{F}, \mathfrak{D})$ $(\mathfrak{F}^*, \mathfrak{D}^*)$ respectively and [C], [L] colocalization and localization subcategories respectively.

The following statements hold.

- (1) $_{R}C(R)_{R} \cong _{R}C^{*}(R)_{R}$ as R-R bi-homomorphism.
- (2) Bilinear map $(I \otimes_R I, I \otimes_R I) \xrightarrow{\upsilon} I \otimes_R I$ where $\upsilon(\sum i_1 \otimes i_2, \sum i_3 \otimes i_4) = (\sum i_1 \otimes i_2) \cdot (\sum i_3 i_4)$ gives a ring structure in C(R), $C^*(R)$ and colocalization $C(R) \to R$, (1) are ring and R R bi-homomorphism.
 - (3) $C(R)^2 = C(R)$ and if R is commutative, so is C(R).
 - (4) Functors C, L induce an equivalence $[C] \sim [L]$.
 - (5) [C] is a Grothendieck category.

Proof. (1)-(3) are obvious by Theorem 1.

Proof of (4): For any $M_R \in \operatorname{Mod-}R$, $C(M) \in [C]$ and $L(M) \in [L]$, it remains to show $C(L(M)) \cong M$ for $M \in [C]$ and $L(C(M)) \cong M$ for $M \in [L]$. But by Lemma 2 and uniqueness of the localization, it is sufficient to show that $\operatorname{Hom}_R(I \otimes_R I, M_R) \otimes_R I \otimes_R I_R \cong M \otimes_R I \otimes_R I_R$ and $\operatorname{Hom}_R(I \otimes_R I_R, M_R) \otimes_R I \otimes_R I_R = \operatorname{Hom}_R(I \otimes_R I_R, M_R)$ canonically.

Let $M_R \in \text{Mod-}R$. The latter is induced by the colocalization $M \otimes_R I \otimes_R I_R \xrightarrow{f} M_R$. Since $\ker(f) \in \mathcal{F}$, $\operatorname{cok}(f) \in \mathcal{F}$ and $I \otimes_R I$ is torsion codivisible, we have exact sequences

$$0 = \operatorname{Hom}_{R}(I \otimes_{R} I, \ker(f)) \to \operatorname{Hom}_{R}(I \otimes_{R} I, M \otimes_{R} I \otimes_{R} I)$$
$$\to \operatorname{Hom}_{R}(I \otimes_{R} I, \operatorname{Im}(f)) \to 0$$

 $0 \rightarrow \operatorname{Hom}_R(I \otimes_R I, \operatorname{Im}(f)) \rightarrow \operatorname{Hom}_R(I \otimes_R I, M) \rightarrow \operatorname{Hom}_R(I \otimes_R I, \operatorname{cok}(f)) = 0.$ Hence $\operatorname{Hom}(I \otimes_R I, f) : L(C(M)) \rightarrow L(M)$ is isomorphism.

Next we must verify the former is induced by the localization $M_R \xrightarrow{g} \operatorname{Hom}_R (I \otimes_R I, M)_R$. Since $\ker(g) \in \mathcal{F}$, $\operatorname{cok}(g) \in \mathcal{F}$, we get a commutative diagram for $M_R \in [C]$:

$$0 \longrightarrow \ker (g \otimes I \otimes I) \longrightarrow M \otimes_{R} I \otimes_{R} I \xrightarrow{g \otimes I \otimes I} \operatorname{Hom}_{R} (I \otimes_{R} I, M) \otimes_{R} I \otimes_{R} I$$

$$\downarrow g_{1} \qquad \qquad \downarrow \langle \downarrow \downarrow g_{2} \qquad \qquad \downarrow g_{3}$$

$$0 \longrightarrow \ker (g) \qquad \longrightarrow M \qquad \xrightarrow{g} \operatorname{Hom}_{R} (I \otimes_{R} I, M)$$

$$\longrightarrow (\operatorname{cok} (g) \otimes_{R} I \otimes I) = 0$$

$$\longrightarrow \operatorname{cok} (g) \longrightarrow 0$$

where rows are exact, g_2 and g_3 are canonical map and g_1 is an induced map. g_1 is monomorphism and $\ker(g) \in \mathcal{F}$ so is $\ker(g \otimes I \otimes I)$. However $\operatorname{Hom}_R(I \otimes_R I, M) \otimes_R I \otimes_R I$ is codivisible with respect to $(\mathcal{F}, \mathcal{F})$, hence above row splits, so $\ker(g \otimes I \otimes I) = 0$ for $M \otimes_R I \otimes_R I \in \mathcal{F}$. Combining with two isomorphisms $\operatorname{Hom}(I \otimes_R I, f)$ and $(h \otimes I \otimes I)g_2^{-1}$ where h is a localization $M \otimes_R I \otimes_R I_R \to \operatorname{Hom}_R(I \otimes_R I, M \otimes_R I \otimes_R I)$, for any $M_R \in \operatorname{Mod-}R$, we have natural isomorphisms:

$$M \otimes_{R} I \otimes_{R} I \cong \operatorname{Hom}_{R} (I \otimes_{R} I, M \otimes_{R} I \otimes_{R} I) \otimes_{R} I \otimes_{R} I$$
$$\cong \operatorname{Hom}_{R} (I \otimes_{R} I, M) \otimes_{R} I \otimes_{R} I$$

whose composition is $g \otimes I \otimes I$ by a routine calculation. Hence $g \otimes I \otimes I$: $C(M) \rightarrow C(L(M))$ is isomorphism.

Proof of (5): Clear from (4).

References

- [1] J. P. Jans: Some aspect of torsions. Pacific J. Math., 15, 1249-1259 (1965).
- [2] T. Kato: Duality between Colocalization and Localization (to appear).
- [3] J. Lambek: Lectures on Rings and Modules. Blaisdell (1966).
- [4] R. J. McMaster: Cotorsion theories and colocalization. Can. J. Math., 27(3), 618-628 (1975).
- [5] K. Ohtake: Colocalization and Localization (to appear).
- [6] Bo Stenström: Rings and Modules of Quotient. Springer Lecture Notes, 237 (1971).