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Introduction. Recently K. Ohtake [5] proved that for a torsion
theory (4, &) there is a colocalization functor if and only if & is a TTF-
class, in this case we have another torsion theory (¥, 9) and T. Kato
[2], K. Ohtake [5] proved that there is an equivalence between the
colocalization subcategory [C] of Mod-R with respect to (<, <F) and the
localization subcategory [L] of Mod-R with respect to (&, D).

In this paper, we shall show a colocalization of any module My
can be obtained by M®Q:zI®rI concretely where I is a corresponding
two sided ideal, i.e. the unique minimal ideal belonging to the filter
which corresponds to (¥, D).

As an application of this, we get self-contained and fairly simple
proofs of the results in [5].

The concrete description of the colocalization. Throughout this
paper, ring B means an associative ring with unit, Mod-R (resp. R-
Mod) denotes a class of all unital right (resp. left) R-modules and (.1,
B) (resp. (A*, $*)) denotes a torsion theory in Mod-R (resp. R-Mod),
about which the reader is referred to [6].

Let (A, B) be a torsion theory. A module M is called “divisible”
if ExtL (K, M)=0 for any K € i, dually “codivisible’ if Ext}, (M, K)=0

for any K ¢ B, and a map M R-—’i—>L(M) r (resp. C(M) R—f—>M ) 1s called
“localization’” of M (resp. “colocalization” of Mz) if ker (f), cok (f) € A,
L(M), e b and L(M) is divisible (resp. ker (f) e B, cok (f) e B, C(M)
e J and C(M) is codivisible).

[L], [C] denote the full subcategory of torsion-free divisible modu-
les in Mod-R and torsion codivisible modules in Mod-R which are called
localization subcategory and colocalization subcategory with respect to
(A, B) respectively.

Let I be a two sided idempotent ideal and F={My ¢ Mod-R|M .1
=0}, then & is TTF-class in the sense of Jans [1]. (i.e. closed under
taking submodules, extensions and direct products). Any TTF-class
in Mod-R is obtained as above, in this case corresponding torsion class
and torsion-free class are I={Mz|M-I=M} and D={Mp|Ann,(I)=0}
respectively. (i.e. (T,5), (F, D) are torsion theories.) The corre-
sponding filter with respect to (F, 9) is J={Jz|J is a right ideal which
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contains I} and torsion submodule of My with respect to (<, F) is M -I.
(see [1]). Any TTF-theory in R-Mod denoted by (9%, F*), (F*, D*) is
defined by the same way. These notations are maintained through-
out this paper.

Localization functor with respect to (<, 9) is represented by L(—)
=Homg (Iz, Homg (I, —)z)=Homg (IQzIz,—). (See [6], by a simple
calculation of operator, new operation of R to Homy (I, —) coincides
with the origin.) On the other hand, for the formulation of the colocal-
ization, we get the following theorem.

Theorem 1. Colocalization functor with respect to (4, F) is ob-

tained by C(—)=—QIQI(C(M R)—f>M 1s canonical). Particularly
CR)=IR®I.

Proof. We show that M®QRIQzI —f>M where f(3] m®1,&1,)
=> mit, e M,i,i,el is a colocalization of M. In the proof we will
omit the suffix to avoid the unnecessary confusion. Let > m®1,&1,
eker (f), 4,5, eI and me M, i.e. 3, mit,=0. We can write i=3 7.7,,
Jid.€l for any iel since I’=I, so (3 mQ1i,®i)i=>, m®i,® (25,7,
=>7 ] mii)R5,87,=0. Hence ker (/)I=0 so ker (f) ¢ F. It is clear
cok (f)=M/MIc¢F, MRrIRQzI ¢ T.

t

We ghall show MQzI®zI is codivigible. Let 0—>Az——>Bz—>
Cr—>0 be an exact sequence in Mod-R such that A ¢ &, then we have
exact sequences and natural isomorphisms

0=Hom (MQzIQrlz, Ar) —>Hom (MRQIQRzI, Br)
I 0
0=Hom (M®I, Hom (I, A))—>Hom (M®I, Hom (I, B))
—>Hom (MK IQzI, Cr)
Q

2 Hom (M®I, Hom (I, C))
since I € I, A ¢ F where h=Hom (M®zI, Hom (I, t)).

Wemust verify i is an epimorphism. Let g: M&zlz—Homg (I, C)p
be any R-homomorphism, M® I € & hence Im (¢9) € 4 so Im (9) CHomp
(I,0)I. Hence to show this we prove p=Hom (I,t)|Hom (I, B)I
is an isomorphism onto Hom (I, C)I. Clearly Hom (I, t) is monomor-
phism, so is p. Let > yie Hom (I, C)I where y e Hom (I,C),i¢el.
We can write 1= i,%,, 41,9, € I for I*=1. Consider the map yi,: [,—Cp
and y4,()=y@9)=y@)j for jel. Since y(i,) e C and t is an epimor-
phism, there is b,;, € B such that t(b;,)=y(¢,). So we define k,;,: I,—Bj
such that &, (j)=0b,,-j for any j eI, then t-k;i,()=t- k;, (.- ) =¥(bs, - 7.9)
=1(D; )] =Y(@Did =y -1,2,(j) for any j eI, hence t-k;t,=y 1,7, S0 we put
9=, k;, -1, then g; e Hom (I, B)I and tq,=> tk;i,=> yi,i,=y( 0,1,
=yi, that is > yi=tG] ¢, >, 9. € Hom (I, B)I, which means p is an
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epimorphism, so is &, as was to be shown.

Localization and colocalization functors are unique up to the iso-
morphism if they exist (see [3], [4], [6]), therefore identity map C(M)
—C(M) is a colocalization of C(M), hence C(C(M))=C(M) so we get the
following lemma.

Lemma 2. M®pI®pIR,I®pI—1>M®,IQ,I is an isomorphism
where I is any two sided idempotent ideal and f(3; m®1i,&Q1,Q1,Q1,)
= mR4u R, (i8,).  Particularly sIQrDRr(IQrD) = gI®zl.

Using above results, we get the next theorem immediately. (2)-
(5) have been proved in [5].

Theorem 3. LetI be a two sided idempotent ideal, (T, FNF, D) ;
(T*, F*NG*, D*) corresponding torsion theories, C,C*; L, L* localiza-
tion and colocalization functors with respect to (I, F)NT*, F*); (F, D)
(F*, D*) respectively and [C], [L] colocalization and localization sub-
categories respectively.

The following statements hold.

1) RCR)r=4zC*(R)r as R—R bi-homomorphism.

(2) Bilinear map IRXgI, I® RI)—”—>I® =l where v(3 1,®1,, 3 1,Q1,)
= 4 ®1,) - (] ity gives a ring structure in C(R), C*(R) and colocaliza-
tion C(R)—R, (1) are ring and R—R bi-homomorphism.

B) CR)Y’=C(R) and if R is commutative, so is C(R).

(4) Functors C, L induce an equivalence [C1~[L].

(B) [C] is a Grothendieck category.

Proof. (1)-(3) are obvious by Theorem 1.

Proof of (4): For any Mz e Mod-R, C(M) € [C] and L(M) ¢ [L], it
remains to show C(L(M))=M for M ¢ [C] and L(C(M))=M for M e [L].
But by Lemma 2 and uniqueness of the localization, it is sufficient to
show that Homyz (IQzI, Mg)RQrIRl = MK IRz, and Homg (IRl 5,
MRpIQrlg)r=Homz IRzlz, Mz)r canonically.

Let Mzec Mod-R. The latter is induced by the colocalization
M®RI®RIR—f>MR. Since ker (f) € &F, cok (f) € F and IQzI is torsion
codivisible, we have exact sequences

0=Homg (I®zI, ker (f))—Homzp Xz, MIR zI)
—Homg (IQzI, Im (f))—0
0—Homy (I®xI, Im (f))—Homz IQzI, M)—Homz (IQzI, cok (f))=0.
Hence Hom (IQzI, f): L(C(M))—L(M) is isomorphism.
Next we must verify the former is induced by the localization

M- >Homy, U®I, M),. Since ker(g)ed, cok (9) e F, we get a
commutative diagram for M, ¢ [C]:
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0—>sker (§RIQN—>MR I 125 L Hom,, IR oI, M)® I, 1

PR o

0—>ker (9) — M ——l—>HomR (IRgI, M)
—>(cok ()X RIRI =0
—>cok (9)—>0
where rows are exact, g, and g, are canonical map and g, is an induced
map. ¢, is monomorphism and ker(9)eF so is ker (9gRIRI).
However Homjz (IQzI, M)QrIQ:I is codivisible with respect to
(d, <), hence above row splits, so ker (¢RQIRDN =0 for MRLIQ I ¢ F.
Combining with two isomorphisms Hom (IQ:l, f) and (ARIRI)g;*
where h is a localization M®zI® I p—Homz IQgl, MR IR D), for any
Mgz e Mod-R, we have natural isomorphisms :
MRrIQ@pI =Homg (IQpl, M RIRQ DR IR I
=Homz (IR, M)QrIQxI
whose composition is gQIRI by a routine calculation. Hence gQIRI :
C(M)—C(L(M)) is isomorphism.
Proof of (5);: Clear from (4).
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