PAPERS CONTRIBUTED

15. On the Mutual Reduction of Algebraic Equations.

By Teiji TAKAGI, M.I.A.

Mathematical Institute, Tokyo Imperial University.

(Rec. Dec. 12, 1925. Comm. Jan. 12, 1926).

Two algebraic equations $F(x) = H(x-a_{\mu}) = 0$ and $G(y) = H(y-\beta_{\nu}) = 0$ of degrees *m* and *n* respectively, irreducible in the rationality-domain *R*, being given, let a polynomial $\varphi(x, y)$ with rational coefficients be so chosen, that the *mn* values $\gamma_{\mu\nu} = \varphi(a_{\mu}, \beta_{\nu})$ are different from each other. These values are the roots of an equation H(z) = 0 of degree *mn* in *R* and $R(\gamma_{\mu\nu}) = R(a_{\mu}, \beta_{\nu})$.

Then we have the following very simple and interesting theorem, which seems to have remained unnoticed.

If H(z) breaks up in e factors $h_i(z)$, irreducible in R, and of degree l_i $(i=1, 2, \dots, e)$, and if $f_i(x, \beta)$ is the greatest common divisor of F(x) and $h_i[x, \beta]$, and $g_i(y, a)$ of G(y) and $h_i[a, y]$, then

$$F(x) = f_1(x, \beta) f_2(x, \beta) \cdots f_e(x, \beta),$$

$$G(y) = g_1(y, \alpha) g_2(y, \alpha) \cdots g_e(y, \alpha)$$

give the decomposition into irreducible factors of F(x) and G(y) in $R(\beta)$ and $R(\alpha)$ respectively.— $h_i[x, y]$ stands for $h_i\{\varphi(x, y)\}$, α or β for any root of F(x)=0 or of G(y)=0. If $f_i(x, \beta)$ and $g_i(y, \alpha)$ are of degrees m_i and n_i respectively, then it is known that

$$l_i = m_i n = m n_i, \qquad \frac{m}{n} = \frac{m_i}{n_i} \ (i = 1, 2, \dots, e).$$

Proof is almost redundant. $\gamma_{\mu\nu} = \varphi(a_{\mu}\beta_{\nu})$ denoting a root of $h_i(z) = 0$, $h_i[x, \beta_{\nu}]$ has with F(x) the greatest common divisor of a degree, say m' > 0, which, on account of the irreducibility of G(y) = 0 in R, must be independent of ν , so that the greatest common divisor is $f_i(x, \beta_{\nu})$ and $m' = m_i$. The total number of the common roots of F(x) = 0 and $h_i[x, \beta_{\nu}] = 0, \nu = 1, 2, \dots, n$, being l_i , we have $l_i = m_i n$. If now $h_i[a, \beta] = 0$ and $\gamma = \varphi(\alpha\beta)$, so that $R(\gamma) = R(\alpha, \beta)$, then it follows from $l_i = m_i n$, that γ , as well as α , must satisfy an equation of degree m_i , which is irreducible in $R(\beta)$, so that $f_i(x, \beta) = 0$, being just of degree m_i , is necessarily irreducible in $R(\beta)$; similarly for $g(y, \alpha)$, q.e.d.

The relations $h_i[a_{\mu}\beta_{\nu}]=0$, $f_i(a_{\mu}\beta_{\nu})=0$ and $g_i(\beta_{\nu}a_{\mu})=0$ subsisting at the same time, $f_i(x, \beta)$ can also be characterized as the greatest common divisor of F(x) and $g_i(\beta, x)$, as $g_i(y, \alpha)$ of G(y) and $f_i(\alpha, y)$, as has been shown by A. LOEWY.¹⁾ But considering, as he does, only the mutual reduction of F(x) and G(y), the relation with the defining equation H(z)=0 of the corpus $R(\alpha, \beta)$ has been left out of consideration, which gap to fill was the object of the present Note.

¹⁾ A. LOEWY, Über die Reduktion algebraischer Gleichungen durch Adjunktion insbesondere reeller Radikale, Math. Zeitschr., 15 (1922), 261–273, s. in particular p. 266.