121. Note on the Conformal Representation.

By Satoru Takenaka.
Shiomi Institute, Osaka.

(Rec. Sep. 5, 1926. Comm. by M. Fujiwara, m.I.A., Oct. 12, 1926.)
Let $V_{\nu}(z),(\nu=0,1,2, \cdots)$ be a set of regular analytic functions, which form a complete system of normalized orthogonal functions on a simply closed analytic curve C of length l :

$$
\frac{1}{l} \int_{c} V_{\mu}(z) \overline{\left.V_{\nu}^{\prime} z\right)} d s \begin{cases}=0 & \text { for } \mu \neq \nu, \\ =1 & \text { for } \mu=\nu .\end{cases}
$$

Then the series

$$
\sum_{\nu=0}^{\infty} V_{\nu}(z) \overline{V_{\nu}(\alpha)}, \quad(\alpha \text { in } C)
$$

is convergent absolutely and uniformly in the closed region interior to C, and represents a definite function $K(z, \alpha)$ dependent only on the curve C.

Now let $\{f(z)\}$ be a set of functions, regular and analytic in C, such that

$$
\frac{1}{l} \int_{c}|f(z)|^{p} d s \leqq 1, \quad(p>0)
$$

Of these functions that which makes $|f(\zeta)|(\zeta$ in $C)$ a maximum is

$$
f^{*}(z)=\varepsilon_{1}\left\{\frac{K(z, \zeta)^{2}}{K(\zeta, \zeta)}\right\}^{\frac{1}{p}}, \quad\left(\left|\varepsilon_{1}\right|=1\right)^{1)}
$$

This problem may also be solved by the conformal transformation.
Let $x=\chi(z, \alpha)$ be the equation by which the interior of C is transformed conformally into the interior of the unit circle about the origin of the x-plane, the point $\boldsymbol{\alpha}$ corresponding to the origin, and let $z=\omega(x, \alpha)$ be the inverse representation.

1) S. Takenaka, General mean modulus of analytic functions, Tôhoku Math. Journal, 27 (1926).

Then we have
$\frac{1}{l} \int_{0}|f(z)|^{p} d s=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f(\omega(x, \alpha))\left\{\frac{2 \pi}{l} \frac{\partial \omega(x, \alpha)}{\partial x}\right\}^{\frac{1}{p}}\right|^{p} d \theta \leqq 1, \quad\left(x=e^{i \theta}\right)$.
Since, under the condition

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}|\varphi(x)|^{p} d \theta \leqq 1, \quad\left(x=e^{i \theta}\right),
$$

the function which is regular and analytic for $|x|<1$ and makes $|\varphi(t)|,(|t|<1)$ a maximum is

$$
\varepsilon_{2}\left\{\frac{1-|t|^{2}}{(1-\bar{t} x)^{2}}\right\}^{\frac{1}{p}}, \quad\left(\left|\varepsilon_{2}\right|=1\right)^{\prime}
$$

we have, putting $t=\chi(\zeta, \alpha)$,

$$
f^{*}(\omega(x, \alpha)) \cdot\left\{\frac{2 \pi}{l} \frac{\partial \omega(x, \alpha)}{\partial x}\right\}=\varepsilon_{3}\left\{\frac{1-|\chi(\zeta, \alpha)|^{2}}{(1-x \overline{\chi(\zeta, a)})^{2}}\right\}^{\frac{1}{p}}, \quad\left(\mid \varepsilon_{3}=1\right)
$$

so that we obtain")

$$
\begin{equation*}
f^{*}(z)=\varepsilon_{3}\left\{\frac{}{2 \pi} \frac{\left.\partial \chi_{1}^{\prime} \cdot, \alpha\right)}{\partial z}\right\} \quad\left\{\frac{1-|\chi(\zeta, a)|^{2}}{1\left(-\chi(z, \alpha) \overline{\chi(\zeta, \alpha))^{2}}\right.}\right\}^{\frac{1}{p}}, \quad\left(\left|\varepsilon_{3}\right|=1\right), \tag{2}
\end{equation*}
$$

or, in particular, if we put $\zeta=\alpha$, we get

$$
\begin{equation*}
f^{*}(z)=\varepsilon_{3}\left\{\frac{l}{2 \pi} \frac{\left.\partial \chi^{\prime} z, \alpha\right)}{\partial z}\right\}^{\frac{1}{p}}, \quad\left(\left|\varepsilon_{3}\right|=1\right) \tag{3}
\end{equation*}
$$

Now comparing (1) with (2), it follows that

$$
\frac{K(z, \zeta)}{K(\zeta, \zeta)^{\frac{1}{2}}}=\varepsilon\left\{\frac{l}{2 \pi} \frac{\partial \chi(z, \alpha)}{\partial z}\right\}^{\frac{1}{2}} \frac{\left(1-|\chi(\zeta, \alpha)|^{2}\right)^{\frac{1}{2}}}{1-\chi(z, \alpha) \overline{\chi(\zeta, \alpha)}}, \quad(|\varepsilon|=1)
$$

Equating the conjugate values of both sides and putting $z=\zeta$, we have, since $K(z, \zeta)=\overline{K(\zeta, z)}$,

$$
K(\zeta, \zeta)^{\frac{1}{2}}=\bar{\varepsilon}\left\{\frac{l}{2 \pi} \frac{\partial \chi(\zeta, a)}{\partial \zeta}\right\}^{\frac{1}{2}} \frac{1}{\left(1-|\chi(\zeta, a)|^{2}\right)^{\frac{1}{2}}}
$$

1) This may be easily proved by the conformal transformation $\xi=\frac{x-t}{1-\bar{t} x}$.
2) Remembering that $\frac{\partial \chi}{\partial z} \cdot \frac{\hat{\mathrm{c}} \omega}{\hat{\chi} x}=1$ for the corresponding values of z and x.

Hence it follows that
(4) $K(z, \zeta)=\frac{l}{2 \pi}\left\{\frac{\partial \chi(z, \alpha)}{\partial z}, \frac{\overline{\partial(\zeta, \alpha)}}{\partial \zeta}\right\}^{\frac{1}{2}} \frac{1}{1-\chi(z, \alpha) \overline{\chi(\zeta, \alpha)}}$, or, in particular,
(5) $\quad K(z, \alpha)=\frac{l}{2 \pi}\left\{\frac{\partial \chi(z, \alpha)}{\partial z}\right\}^{\frac{1}{2}}\left\{\frac{\overline{\partial \chi(z, \alpha)}}{\partial z}\right\}_{z=\alpha}^{\frac{1}{2}}$

Thus we see that the definite function $K(z, \alpha)$ may be expressed by (4) or (5). These formulas have been obtained by other method in my paper: "On some properties of orthogonal functions etc.," to appear in the Japanese Journal of Math., 3 (1926).

