37. On the Roots of the Characteristic Eqution of a Certain Matrix.

By Masatsugu TsuJI.
Mathematical Institute, Tokyo Imperial University. (Rec. March 1, 1929. Comm. by T. Takagi, m.I.A., March 12, 1929.)

The well-known theorem of Frobenius, that all the roots of the characteristic equation of a unitary matrix are of absolute value 1 is recently proved by Mr. H. Aramata ${ }^{1)}$ and Mr. R. Brauer ${ }^{2}$) simply. I will here give another simple proof and a generalization of it.
Theorem. Let the transformation,

$$
\left\{\begin{array} { l }
{ X _ { 1 } = a _ { 1 1 } x _ { 1 } + \ldots + a _ { 1 n } x _ { n } , } \\
{ \ldots \ldots \ldots \ldots \ldots \ldots \ldots } \\
{ X _ { n } = a _ { n 1 } x _ { 1 } + \ldots + a _ { n n } x _ { n } , }
\end{array} \quad \left\{\begin{array}{l}
\bar{X}_{1}=\bar{a}_{11} \bar{x}_{1}+\ldots+\bar{a}_{1 n} \bar{x}_{n}, \\
\ldots \ldots \ldots \ldots \ldots \ldots \\
\bar{X}_{n}=\bar{a}_{n 1} \bar{x}_{1}+\ldots+\bar{a}_{n n} \bar{x}_{n},
\end{array}\right.\right.
$$

$\bar{a}_{i k}, \bar{x}_{i}$ being conjugate complex of $a_{i k}$ and x_{i}, make a function $F\left(x_{1}, \bar{x}_{1}, \ldots x_{n}, \bar{x}_{n}\right)$ invariant, such that

$$
\begin{equation*}
F\left(X_{1}, \bar{X}_{1} \ldots X_{n 1} \bar{X}_{n}\right)=F\left(x_{1}, \bar{x}_{1} \ldots x_{n}, \bar{x}_{n}\right), \tag{1}
\end{equation*}
$$

where F satisfies the following conditions:
(i) $F\left(\lambda x_{1}, \bar{\lambda} \bar{x}_{1} \ldots \lambda x_{n}, \bar{\lambda} \bar{x} x_{n}\right)=|\lambda|^{k} F\left(x_{1}, \overline{x_{1}} \ldots x_{n}, \overline{x_{n}}\right), k$ being a real number.
(ii) $F\left(x_{1}, \bar{x}_{1} \ldots x_{n}, \bar{x}_{n}\right) \neq 0, \neq \infty$ for $\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right|>0$.

Then all the roots of the characteristic equation of the matrix $A=\left(a_{i k}\right)$ are of absolute value 1.
When $F=x_{1} \bar{x}_{1}+\ldots+x_{n} \bar{x}_{n}, A$ becomes a unitary matrix.
Proof. Let λ be a root of the characteristic equation of A. Then the linear equations,

$$
\left\{\begin{array}{c}
\lambda x_{1}=a_{11} x_{1}+\ldots+a_{1 n} x_{n} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
\lambda x_{n}=a_{n 1} x_{1}+\ldots+a_{n n} x_{n}
\end{array}\right.
$$

has a solution $\left(x_{1}, x_{2}, \ldots x_{n}\right)$ such that

1) H. Aramata, Uber einen Satz für unitäre Matrizen, The Tôhoku Mathematical Journal 28 (1927), 281.
2) R. Brauer, Uber einen Satz für unitäre Matrizen, The Tohoku Mathematical Journal, 30 (1928), 72.
(2)

$$
\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right| \neq 0 .
$$

For such a solution, we have by (1)

$$
\boldsymbol{F}\left(i x_{1}, \bar{\lambda} \bar{x}_{1}, \ldots \lambda x_{n}, \bar{\lambda} \bar{x}_{n}\right)=\boldsymbol{F}\left(x_{1}, \bar{x}_{1}, \ldots x_{n}, \bar{x}_{n}\right)
$$

and from (i)

$$
F\left(\lambda x_{1}, \bar{\lambda} \bar{x}_{1}, \ldots \lambda x_{n}, \lambda \overline{x_{n}}\right)=|\lambda|^{k} F\left(x_{1}, \bar{x}_{1}, \ldots x_{n}, \bar{x}_{n}\right) .
$$

Hence

$$
|\lambda|^{k} F\left(x_{1}, \bar{x}_{1} \ldots x_{n}, \bar{x}_{n}\right)=F\left(x_{1}, \bar{x}_{1}, \ldots x_{n}, \bar{x}_{n}\right)
$$

and by (ii) and (2), we have

$$
|\lambda|^{k}=1 \quad \text { or } \quad|\lambda|=1, \text { q.e.d. }
$$

