74. A Geometrical Proof of a Theorem on the Secular Equation.

By Masaji Itô.
(Comm. by M. Fujiwara, m.i.A., July 13, 1931.)

The well-known fact that the secular equation

$$
|A-\lambda E|=\left|a_{i k}-\lambda \delta_{i k}\right|=0, \quad\left(a_{i k}=a_{k i}\right)
$$

has real roots only, may geometrically be interpreted as follows.
A plane determined by n points

$$
\begin{array}{llll}
P_{1}: & \left(a_{11}-\lambda,\right. & a_{12}, & \left.\ldots \ldots, \quad a_{1 n}\right), \\
P_{2}: & \left(a_{21},\right. & a_{22}-\lambda, & \left.\ldots \ldots, a_{2 n}\right), \\
\ldots \\
P_{n}: & \left(a_{n 1},\right. & a_{n 2}, & \ldots \ldots . \\
\left.a_{n n}-\lambda\right),
\end{array}
$$

passes through the origin n times, when the parameter λ varies from $-\infty$ to $+\infty$ continuously.

We will prove this theorem by simple geometrical consideration.
Let l_{i} be the straight line, parallel to the coordinate axis x_{i}, passing through ($a_{i 1}, a_{i 2}, \ldots \ldots, a_{i n}$), along which the point P_{i} moves from $+\infty$ to $-\infty$, when λ varies from $-\infty$ to $+\infty$.

First consider the case, where $l_{1}, l_{2}, \ldots \ldots, l_{n}$ meet in a point. We transform then $l_{1}, l_{2}, \ldots .$. to the coordinates axes and the origin to a point P, lying in the region, where all coordinates are of the same sign.

For the sake of simplicity, we take $n=3$.
Let Q be the orthogonal projection of P on the $x_{1} x_{2}$ plane, and S be the intersection of the x_{3} axis with the join of P, R, where R denotes the intersection of $P_{1} P_{2}$ and $O Q$.

When the plane $P_{1} P_{2} P_{3}$ passes through P, S will coincide with P_{3}.
When λ is negative and $|\lambda|$ is sufficiently large, P_{3} lies on the positive x_{3} axis far from the origin, while S lies very near to O.

When λ increases gradually, P_{3} moves towards O, while S towards $+\infty$.

Therefore there comes a moment, where S coincides with P_{3}. After that moment, S moves further and comes on the negative side on the x_{3} axis, passing through infinity, when R passes through Q, that is, $P_{1} P_{2}$ passes through $Q . Q$ lies in the region on the $x_{1} x_{2}$ plane, where the coordinates are of the same sign. Therefore, if we can
prove that $P_{1} P_{2}$ passes through Q twice, then S passes through infinity twice, so that S coincides with P_{3} three times in all.

Thus the problem is reduced to the case $n=2$.
It is evident that $P_{1} P_{2}$ passes through Q once, when each of P_{1}, P_{2} moves from $+\infty$ towards O, if Q lies in the first quadrant. After this moment, $P_{1} P_{2}$ will coincide with x_{2} axis and then with x_{1} axis, or in the inverse order, according as P_{1} passes through the origin before or after P_{2}. Therefore $P_{1} P_{2}$ passes through Q once more.

Thus the theorem is proved.
The general case will be proved by mathematical induction, quite similarly to the above reasoning.

We will next turn to the case, where $l_{1}, l_{2}, \ldots \ldots, l_{n}$ do not meet in one point.

Without any loss of generality we can assume $a_{12}, a_{13}, \ldots \ldots, a_{1 n}>0$. Let l_{i} be the straight line, along which P_{i} moves from $+\infty$ to $-\infty$. When $n=2 m$, the plane passing through $l_{2}, l_{3}, \ldots \ldots, l_{m}$ and O, and further a point T (corresponding to $\lambda=\lambda_{0}$) on l_{m+1} will meet the line l_{1} at a point A, corresponding to the value of λ, which satisfies

$$
\left|\begin{array}{llll}
a_{11}-\lambda & a_{1, m+1} & \ldots \ldots, & a_{1 n} \tag{1}\\
a_{21} & a_{1, m+1} & \ldots \ldots ., & a_{2 n} \\
\ldots \\
a_{n+1,1} & a_{m+1, m+1}-\lambda_{10} & \ldots \ldots, & a_{m+1, n}
\end{array}\right|=0
$$

Again, the plane passing through $l_{m+2}, \ldots \ldots, l_{n}$ and O, T will meet the line l_{1} at a point B, corresponding to the value of λ satisfying

$$
\left|\begin{array}{llll}
a_{11}-\lambda & a_{12} & \ldots \ldots, & a_{1, m+1} \tag{2}\\
a_{m+1,1} & a_{m+1,2} & \ldots \ldots, & a_{m+1, m+1}-\lambda_{0} \\
\ldots \ldots
\end{array}\right|=0 .
$$

Since $a_{i k}=a_{k i}$, (1) and (2) are the same, so that A coincides with B. If we determine λ_{0} such that T lies on the plane passing through l_{1} and O, then A will be uniquely determined.

When $n=2 m+1$, it is easily verified, that two planes passing through the origin and $l_{2}, l_{3}, \ldots \ldots, l_{m+1} ; l_{m+2}, \ldots \ldots, l_{n}$ respectively will meet l_{1} at the same point. Let this point be A.

Then draw l_{i}^{\prime} parallel to l_{i}, passing through A, and denote by P_{i}^{\prime} the intersection of l_{i}^{\prime} with $O P_{i}$. Then $P_{1}, P_{2}^{\prime}, \ldots \ldots, P_{n}^{\prime}$ move along $l_{1}, l_{2}^{\prime}, \ldots \ldots, l_{n}^{\prime}$, which meet in the point A. And two planes $P_{1} P_{2} \ldots \ldots P_{n}, P_{1} P_{2}^{\prime} \ldots \ldots P_{n}^{\prime}$ pass through O at the same time.

If the x_{1} coordinate of A be negative, then $P_{2}, P_{3}, \ldots \ldots$ will move on $l_{2}^{\prime}, l_{3}^{\prime}, \ldots \ldots$ in the negative sense. Therefore, inverting the direction of l_{1}, A lies in the region where all coordinates are of the same sign. Therefore the plane $P_{1} P_{2}^{\prime} P_{3}^{\prime} \ldots \ldots P_{n}^{\prime}$, consequently $P_{1} P_{2} \ldots \ldots P_{n}$, passes through O exactly n times.

Thus the reality of roots of the secular equation is established.
The Sylvester's theorem, which asserts the reality of roots of the equation

$$
|A-\lambda B|=0,
$$

where A, B are symmetric, and A or B is definite, can also be proved geometrically; we will publish the proof in another occasion.

