PAPERS COMMUNICATED

73. On the Roots of the Characteristic Equation of a Certain Matrix.

By Shin-ichi Takahashi.

Shiomi Institute, Osaka.
(Comm. by M. Fujiwara, m.I.A., July 13, 1931.)
The object of this note is to prove the following
TheOREM. Let $A=\left(a_{i k}\right)$ be a square matrix of order n, whose elements are real or complex. If there exist n real or complex numbers $t_{1}, t_{2}, \ldots \ldots, t_{n}$ such that

$$
\sum_{k=1}^{n}\left|t_{k}\right|\left|a_{i k}\right| \leqq\left|t_{i}\right|, \quad(i=1,2, \ldots \ldots, n)
$$

then all the roots of the characteristic equation of matrix A have their absolute values not greater than 1.

I prove this theorem by purely algebraical method due to Mr. Rohrbach,") who gave a simple proof of a theorem enunciated by Mr. Tambs Lyche.

Proof. First we shall treat the case, where all $\left|t_{i}\right|$ are equal, viz.

$$
\sum_{k=1}^{n}\left|a_{i k}\right| \leqq 1, \quad i=1,2, \ldots \ldots, n .
$$

Now let λ be a root of the characteristic equation of matrix A. Then the system of equations

$$
\left(a_{\rho p}-\lambda\right) x_{p}-\sum_{k \neq p}^{1, n} a_{\rho k} x_{k}=0, \quad \rho=1,2, \ldots \ldots, n
$$

have the solutions $x_{1}, x_{2}, \ldots \ldots, x_{n}$ not all zero. Suppose now

$$
\left|x_{p}\right|=\operatorname{Max}\left(\left|x_{1}\right|,\left|x_{2}\right|, \ldots \ldots,\left|x_{n}\right|\right),
$$

then we get

$$
\left|a_{\rho \rho}-\lambda\right|\left|x_{\rho}\right| \leqq \sum_{k \neq p}^{1, n}\left|a_{\rho k}\right|\left|x_{k}\right| \leqq\left(\sum_{k \neq \mathrm{p}}^{1, n}\left|a_{\rho k}\right|\right)\left|x_{\rho}\right|
$$

therefore

$$
\left|a_{p p}-\lambda\right| \leqq \sum_{k \neq p}^{1, n}\left|a_{p k}\right| \leqq 1-\left|a_{p p}\right|
$$

In case $\left|a_{\text {pp }}\right|=1$, the above inequality shows us

$$
|\lambda|=\left|a_{p p}\right|=1
$$

1) Jahresber. d. D. M. V. 40 (1931), 49.

In other case, we see that λ lies in the circle with centre $a_{p p}$ and the radius $\leqq 1-\left|a_{p p}\right|$, and it is evident that this circle is wholly contained in the unit circle with centre at the origin. Thus all the roots of the characteristic equation of matrix A have their absolute values not greater than 1.

From this special case, our theorem is easily deduced.
Let

$$
T=\left(\begin{array}{llll}
t_{1} & & & \\
& t_{2} & & \\
& & \ddots & \\
& & \ddots & \\
& & & t_{n}
\end{array}\right)
$$

then

$$
B=T^{-1} A T=\left(\begin{array}{llll}
a_{11} & \frac{t_{2}}{t_{1}} a_{12} & \ldots \ldots & \frac{t_{n}}{t_{1}} a_{1 n} \\
\frac{t_{1}}{t_{2}} a_{21} & a_{22} & \ldots \ldots & \frac{t_{n}}{t_{2}} a_{2 n} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
\frac{t_{1}}{t_{n}} a_{n 1} & \frac{t_{2}}{t_{n}} a_{n 2} & \cdots \cdots & a_{n n}
\end{array}\right)=\left(b_{i k}\right) .
$$

Now the matrix B satisfies by our hypothesis the conditions

$$
\sum_{k=1}^{n}\left|b_{i k}\right| \leqq 1, \quad i=1,2, \ldots \ldots, n
$$

Therefore all the roots of the characteristic equation of matrix B have their absolute values not greater than 1.

Since A and B are similar matrices, the roots of the characteristic equation of matrix B coincide with those of A. Our theorem is thus completely proved.
N.B. In case where the system of equations

$$
\left(a_{p p}-\lambda\right) x_{p}-\sum_{k \neq p}^{1, n} a_{p k} x_{k}=0
$$

have the solutions $t_{1}, t_{2}, \ldots \ldots, t_{n}$, our theorem is trivial. For then

$$
\begin{aligned}
|\lambda|\left|x_{\mathrm{p}}\right| & \leqq \sum_{k=1}^{n}\left|a_{\rho k}\right|\left|x_{k}\right| \\
& =\sum_{k=1}^{n}\left|a_{\rho k}\right|\left|t_{k}\right| \\
& \leqq\left|t_{p}\right|=\left|x_{\mathrm{p}}\right|
\end{aligned}
$$

therefore

$$
|\lambda| \leqq 1
$$

No. 7.] On the Roots of the Characteristic Equation of a Certain Matrix. 243
From our proof it is also evident that we can establish the following theorem:

Let λ be a root of the characteristic equation of a matrix of the nth order $A=\left(a_{i k}\right)$. Then

$$
|\lambda| \leqq M \quad \text { or } \quad|\lambda| \leq N,
$$

where

$$
\begin{array}{rr}
\left|a_{i 1}\right|+\left|a_{i 2}\right|+\cdots \cdots+\left|a_{i n}\right|=M_{i}, & \left|a_{1 k}\right|+\left|a_{2 k}\right|+\cdots \cdots+\left|a_{n k}\right|=N_{k}, \\
M=\operatorname{Max}\left(M_{1}, M_{2}, \cdots, M_{n}\right), & N=\operatorname{Max}\left(N_{1}, N_{2 j}, \cdots \cdots, N_{n}\right) .
\end{array}
$$

This is an extension of Bromwich's inequality

$$
|\lambda| \leqq n M a x\left|a_{i k}\right|, \quad i, k=1,2, \ldots \ldots, n .
$$

Further applying this theorem to an equality

$$
a_{0}\left|\begin{array}{cccccc}
z+\frac{a_{1}}{a_{0}} & \frac{a_{2}}{a_{0}} & \frac{a_{3}}{a_{0}} & \ldots \ldots & \frac{a_{n-1}}{a_{0}} & \frac{a_{n}}{a_{0}} \\
-1 & z & 0 & \ldots \ldots . & 0 & 0 \\
0 & -1 & z & \ldots \ldots & 0 & 0 \\
\ldots \\
0 & 0 & 0 & \ldots \ldots & -1 & z
\end{array}\right|=a_{0} z^{n}+a_{1} z^{n-1}+\cdots \cdots+a_{n},
$$

which is easily proved by mathematical induction, we obtain two wellknown theorems:

Theorem A. The absolute values of the roots of an algebraic equation

$$
a_{0} z^{n}+a_{1} z^{n-1}+\cdots \cdots+a_{n}=0, \quad a_{0} \neq 0
$$

are not greater than

$$
\operatorname{Max}\left(1, \frac{\left|a_{1}\right|+\left|a_{2}\right|+\cdots \cdots+\left|a_{n}\right|}{\left|a_{0}\right|}\right) .
$$

Theorem B. The absolute values of the roots of an algebraic equation

$$
a_{0} z^{n}+a_{1} z^{n-1}+\cdots \cdots+a_{n}=0, \quad a_{0} \neq 0
$$

are not greater than

$$
1+\frac{K}{\left|a_{0}\right|},
$$

where

$$
K=\operatorname{Max}\left(\left|a_{1}\right|,\left|a_{2}\right|, \ldots \ldots,\left|a_{n}\right|\right) .
$$

