62. A Generalization of Ostrowski's Theorem on "Overconvergence" of Power Series.

By Satoru TAKENAKA.

Shiomi Institute, Osaka. (Comm. by M. FUJIWARA, M.I.A., June 13, 1932.)

In my previous paper,¹⁾ I have proved that a function f(z), regular and analytic for $|z| \le r(r \ge 1)$, can be expanded into the series of the form

(1)
$$f(z) = \sum_{n=0}^{\infty} c_n z^n e^{\overline{a}_n z}$$

which converges absolutely and uniformly for $|z| \leq 1$ provided that

$$\overline{\lim_{n=\infty}|a_n|} = L < \frac{1}{e}$$

Let $\{\pi_n(z)\}\$ be a sequence of polynomials defined by

$$p_n(z) = \frac{1}{2\pi} \int_{|\zeta|=1} \pi_n(\zeta) e^{z\overline{\zeta}} |d\zeta|, \qquad (n=0, 1, 2, \dots)$$

where

$$p_{0}(z) = 1, \quad p_{n}(z) = \int_{a_{0}}^{z} \int_{a_{1}}^{t_{1}} \dots \int_{a_{n-1}}^{t_{n-1}} dt_{n} dt_{n-1} \dots dt_{1}, \quad (n \ge 1).$$

Since $\{\pi_n(z)\}\$ and $\{z^n e^{\alpha_n z}\}\$ are each other biorthogonal²⁾ on |z|=1, we have, from (1),

$$\frac{1}{1-\bar{x}z} = \sum_{n=0}^{\infty} \overline{\pi_n(x)} \, z^n e^{\bar{a}_n z} \,, \qquad (|x| \le 1, |z| \le \frac{1}{|x|})$$

or

(2)
$$\frac{1}{\zeta - x} = \sum_{n=0}^{\infty} \pi_n(x) \frac{1}{\zeta^{n+1}} e^{\frac{\alpha_n}{\zeta}}, \quad (|x| < 1, |\zeta| > |x|)$$

the series on the right hand side of (2) being convergent absolutely and uniformly for $|\zeta| \ge r' > |x|$.

Now let f(z) be a function, regular and analytic for |z| < 1, with at least one singular point on |z|=1. Then the function defined by

$$F(z) = \frac{1}{2\pi i} \int_{|\zeta| < 1} f(\zeta) \frac{1}{\zeta} e^{\frac{z}{\zeta}} d\zeta$$

may easily be shown to be an integral transcendental function of type 1 and of the first order, and this can be uniquely determined if

¹⁾ S. Takenaka: On the expansion of an integral transcendental function of the first order in generalized Taylor's series, Proc., 8 (1932), 59.

²⁾ See Takenaka loc. cit.

No. 6.] A Generalization of Ostrowski's Theorem on "Overconvergence."

$$F^{(n)}(a_n) = \frac{1}{2\pi i} \int_{|\varsigma| < 1} f(\zeta) \frac{1}{\zeta^{n+1}} e^{\frac{\alpha_n}{\zeta}} d\zeta , \qquad (n = 0, 1, 2, \dots)$$

are given. (See my paper loc. cit.¹⁾).

Multiplying both sides of (2) by $\frac{1}{2\pi i} f(z)$ and integrating term by term we get (putting z in place of x)

(3)
$$f(z) = \sum_{n=0}^{\infty} c_n \pi_n(z)$$
, $c_n = F^{(n)}(\alpha_n)$, $(n=0, 1, 2,)$

which converges absolutely and uniformly for $|z| \leq r \leq 1$.

Particularly if we put

$$a_n = -a$$
, $(n=0, 1, 2,)$,

it can easily be shown that (3) holds good for any finite value of |a|. In this special case, we have

$$p_n(z) = \frac{1}{n!} (z+a)^n, \qquad (n=0, 1, 2, \dots)$$

$$\pi_n(z) = z^n \sum_{\nu=0}^n \frac{1}{\nu!} \left(\frac{a}{z}\right)^\nu, \qquad (n=0, 1, 2, \dots).$$

and

$$\lim_{n \to \infty} \frac{\pi_n(z)}{z^n} = e^{\frac{\alpha}{z}}, \quad (z \neq 0),$$

we have

Since

Moreover, by the definition of the type and the order of integral transcendental functions, we have

$$\lim_{n\to\infty}\sqrt[n]{|F^{(n)}(-a)|} = 1$$

 $\lim \sqrt[m]{\pi_n(z)} = |z|.$

Therefore the series

(4)
$$f(z) = \sum_{n=0}^{\infty} F^{(n)}(-a)\pi_n(z), \quad \pi_n(z) = z^n \sum_{\nu=0}^n \frac{1}{\nu!} \left(\frac{a}{z}\right)^{\nu}, \quad (n=0, 1, 2, \dots)$$

must absolutely converge for |z| < 1 and not converge for |z| > 1.

By the use of (4) we can prove the following theorem:

THEOREM I. If in $f(z) = \sum_{\nu=0}^{\infty} a_{\nu} \pi_{\lambda_{\nu}}(z)$, $\overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|} = 1$, there are infinitely many suffixes such that

$$\lambda_{\nu_k+1} - \lambda_{\nu_k} > \theta \lambda_{\nu_k}, \qquad (\theta > 0) ,$$

then the series $\sum_{k=0}^{\infty} \Delta_k(z)$ where $\Delta_0(z) = a_0 + \dots + a_{\nu_1} \pi_{\lambda_{\nu_1}}(z), \dots,$ $\Delta_{k}(z) = a_{\nu_{k+1}} \pi_{\lambda_{\nu_{k+1}}}(z) + \dots + a_{\nu_{k+1}} \pi_{\lambda_{\nu_{k+1}}}(z) ,$ 225

converges uniformly in the neighbourhood of every regular point on the circle of convergence |z|=1.

PROOF. Putting $z = xe^{i\theta}$, $a = \beta e^{i\theta}$ and

$$F(z) = F(xe^{i\theta}) = \phi(x) ,$$

we have $\sum_{n=0}^{\infty} F^{(n)}(-a) z^n \sum_{\nu=0}^{n} \frac{1}{\nu!} \left(\frac{a}{z}\right)^{\nu} = \sum_{n=0}^{\infty} \phi^{(n)}(-\beta) x^n \sum_{\nu=0}^{n} \frac{1}{\nu!} \left(\frac{\beta}{x}\right)^{\nu}$

in which $\phi(x)$ is also an integral transcendental function of type 1 and of the first order. Thus without any loss of generality we prove the theorem for z=1.

As usual we put

$$R_n(z) = f(z) - \sum_{k=0}^{n-1} \Delta_k(z)$$

and take three circles with centers at $z=\frac{1}{2}$ and radii r_1 , r_2 , r_3 such

that
$$\frac{1}{2} + r_1 < \frac{1}{2} + r_2 < 1 < \frac{1}{2} + r_3$$

and f(z) is regular in and on these circles.

Applying Hadamard's theorem of three circles, we have

$$egin{aligned} &\log rac{r_3}{r_1} \log M_2^{(n)} \leq \log rac{r_3}{r_2} \log M_1^{(n)} + \log rac{r_2}{r_1} \log M_3^{(n)} \ &M_k^{(n)} = \max_{ert < rac{1}{2} ert = r_k} ert R_n(z) ert \,, \qquad (k = 1, \, 2, \, 3) \,. \end{aligned}$$

where

We introduce another circle with center at $\frac{1}{2}$ and radius r_1 such that

$$\frac{1}{2}+r_1<\frac{1}{2}+r_1'<1.$$

Furthermore let us put

 $\frac{1}{2} + r_1 = 1 - \delta \rho$, $\frac{1}{2} + r_1' = 1 - \delta^2$, $\frac{1}{2} + r_2 = 1 + \delta^2$, $\frac{1}{2} + r_3 = 1 + \delta \rho$ where ρ is a fixed positive number.

Since
$$|F^{(n)}(-\alpha)| = \left| \frac{1}{2\pi i} \int_{|\zeta|=1-\delta^2} f(\zeta) \frac{1}{\zeta^{n+1}} e^{-\frac{\alpha}{\zeta}} d\zeta \right|$$

 $\leq S e^{\frac{|\alpha|}{1-\delta^2}} \frac{1}{(1-\delta^2)^{n+1}} < S' \frac{1}{(1-\delta^2)^n}$
in which $S = \max_{|\beta|=1-\delta^2} |f(z)|$

and S' is a positive constant depending only on δ , we have

[Vol. 8,

No. 6.] A Generalization of Ostrowski's Theorem on "Overconvergence."

227

$$M_{1}^{(n)} \leq \sum_{\nu=\nu_{n}+1}^{\infty} \left| F^{(\lambda_{\nu})}(-a) \pi_{\lambda_{\nu}}(z) \right| \leq \sum_{\nu=\nu_{n}+1}^{\infty} \left| F^{(\lambda_{\nu})}(-a) z^{\lambda_{\nu}} e^{\left|\frac{a}{z}\right|} \\ \leq S' e^{\frac{|a|}{1-\delta\rho}} \sum_{\nu=\nu_{n}+1}^{\infty} \left(\frac{1-\delta\rho}{1-\delta^{2}}\right)^{\lambda_{\nu}} \leq S_{I} \left(\frac{1-\delta\rho}{1-\delta^{2}}\right)^{\lambda_{\nu_{n}}+1}$$

where S_1 is a positive constant depending only on δ .

If we put $M = \max_{|x-\frac{1}{2}|=r_3} |f(z)|$, we have

$$egin{aligned} M_3^{(n)} &\leq M + \sum_{
u=0}^{
u_n} |F^{(\lambda_
u)}(-lpha) \pi_{\lambda_
u}(z)| \leq M + S' e^{rac{|lpha|}{1+\delta
ho}} \sum_{
u=0}^{
u_n} \left(rac{1+\delta
ho}{1-\delta^2}
ight)^{\lambda_
u} &\leq S_2 \!\! \left(rac{1+\delta
ho}{1-\delta^2}
ight)^{\lambda_
u_n}, \end{aligned}$$

again S_2 being a positive constant which depends only on δ . Therefore we have

$$\log \frac{r_3}{r_1} \log M_2^{(n)} \leq \log \frac{\frac{1}{2} + \delta\rho}{\frac{1}{2} + \delta^2} \log \left(\frac{1 - \delta\rho}{1 - \delta^2}\right)^{\lambda_{\nu_n+1}} \\ + \log \frac{\frac{1}{2} + \delta^2}{\frac{1}{2} - \delta\rho} \log \left(\frac{1 + \delta\rho}{1 - \delta^2}\right)^{\lambda_{\nu_n}} + S_3$$

from which, by a similar discussion as in Bieberbach's Funktionentheorie Bd. II, 295, we can prove Theorem I.

From Theorem I, we can conclude that

THEOREM II. Let f(z) be regular and analytic for $|z| \le 1$ and let

$$F(z) = \frac{1}{2\pi i} \int_{|\zeta| < 1} f(\zeta) \frac{1}{\zeta} e^{\frac{z}{\zeta}} d\zeta$$

be an integral transcendental function of type 1 and of the first order.

If
$$F^{(n)}(-\alpha)=0$$
 for $\lambda_{\nu+1}>n>\lambda_{\nu}$

and $F^{(n)}(-\alpha) \neq 0$ for $n = \lambda_n$

where $\lambda_{\nu}(\nu=0, 1, 2....)$ are integers such that

$$\lambda_{\nu+1} - \lambda_{\nu} > \theta \lambda_{\nu}, \qquad \theta > 0$$

Then |z|=1 is a natural cut for f(z). Here a is any complex constant.

This is a generalization of a theorem of Hadamard's.