15. On the Convergence Factor of the Fourier-Denjoy Series.

By Fu Traing Wang.
Mathematical Institute, Tohoku Imperial University, Sendai.
(Comm. by Fujiwara, m.I.A., Feb. 12, 1934.)
Hardy has shown that $(\log n)^{-1}$ is a convergence factor of the Fourier-Lebesgue series. The object of this paper is to show that n^{-1} is a convergence factor of the Fourier-Denjoy series, and to construct an example such that $n^{-\delta}(0<\delta<1)$ is not the convergence factor of the Fourier-Denjoy series.

1. Let $f(x)$ be a function, integrable in Denjoy-Perron's sense and periodic, with period 2π. And let

$$
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

Then we have
Theorem. n^{-1} is a convergence factor of the Fourier-Denjoy series (1-1). In fact,

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} \frac{a_{n} \cos n x+b_{n} \sin n x}{n}
$$

converges almost everywhere.
In order to prove the theorem, we require the following
Lemma. ${ }^{1)}$ The Fourier-Denjoy series (1.1) is summable (C, $1+\delta$) $(\delta>0)$ almost everywhere.

Put

$$
\begin{aligned}
& s_{n}(x)=\frac{a_{0}}{2}+\sum_{k=1}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right), \\
& \phi(t)=\frac{1}{2}\{f(x+t)+f(x-t)-2 f(x)\}
\end{aligned}
$$

and

$$
\phi_{1}(t)=\int_{0}^{t} \phi(u) d u
$$

Then

$$
\phi_{1}(t)=o(t)^{2)}
$$

for almost all values of x in $(-\pi, \pi)$, and then

1) Priwalof: Rend. di Palermo, 41 (1916).
c.f. Bosanquet, Proc. London math. soc. 31.
2) Hobson: Theory of function, vol. I (1921), p. 642.

$$
\begin{aligned}
s_{n}(x) & =f(x)+\frac{1}{\pi} \int_{0}^{\pi} \phi(t) \frac{\sin (2 n+1) \frac{t}{2}}{\sin \frac{t}{2}} d t \\
& =f(x)+\frac{1}{\pi} \phi_{1}(\pi) \frac{\sin (2 n+1) \frac{\pi}{2}}{\sin \frac{\pi}{2}}-\frac{1}{\pi} \int_{0}^{\pi} \phi_{1}(t) \frac{d}{d t}\left(\frac{\sin (2 n+1) \frac{t}{2}}{\sin \frac{t}{2}}\right) d t \\
& =o(n)+\int_{0}^{\pi} o(t) O\left(\frac{n}{t}\right) d t=o(n),
\end{aligned}
$$

almost everywhere in $(-\pi, \pi)$.
Therefore

$$
\sum_{k=1}^{n} \frac{a_{k} \cos k x+b_{k} \sin k x}{k} k=s_{n}(x)-\frac{a_{0}}{2}=o(n)
$$

almost everywhere in $(-\pi, \pi)$.
Now, by Hardy and Littlewood's theorem, ${ }^{1)}$ the series (1.2) is summable $(C, \delta)(\delta>0)$ almost everywhere. On the other hand, if $(1 \cdot 2)$ is summable (C, δ), then it is convergent, provided that ($1 \cdot 3$) is satisfied. Hence the theorem is proved.
2. We will construct an example such that (1-1) is the FourierDenjoy series and

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} \frac{a_{n} \cos n x+b_{n} \sin n x}{n^{\delta}}
$$

diverges almost everywhere for $0<\delta<1$.
Let r be a positive integer such that $r>(1-\delta)^{-1}$, and let

$$
r \delta<p<r-1
$$

We put

$$
\alpha_{k}=\frac{\pi}{(k!)^{r-r \delta}}, \quad(k=1,2, \ldots \ldots)
$$

and take c_{k} such that

$$
0 \leqq c_{k} \leqq(k!)^{r} k^{p-r}, \quad(k=1,2, \ldots \ldots)
$$

Now, we define $\phi(t)$ by

$$
\phi(t)=c_{k} \cos \left\{(k!)^{r} t\right\}, \quad \text { for } t \text { in }\left(\alpha_{k} \alpha_{k-1}\right) \quad(k=2,3, \ldots \ldots),
$$

and $\phi(t)=\phi(-t)$. Then $\phi(t)$ is an even function, integrable in Lebesgue's sense in any interval, excluding the origin.

1) Hardy and Littlewood: Math. Zeits., 19 (1924).
2) Knopp: Rend. di Palermo, 25 (1907).

Now

$$
\begin{aligned}
I_{k} & =\int_{\alpha_{k}}^{\alpha_{k-1}} \phi(t) d t=c_{k} \int_{\alpha_{k}}^{\alpha_{k-1}} \cos \left\{(k!)^{r} t\right\} d t \\
& =\frac{c_{k}}{(k!)^{r}}\left[\sin \left\{(k!)^{r} t\right\}\right]_{\alpha_{k}}^{\alpha_{k-1}}=O\left(k^{p-r}\right) .
\end{aligned}
$$

If x^{\prime} lies in $\left(\alpha_{i} \alpha_{i-1}\right)$ and $x^{\prime \prime}$ in ($\alpha_{j} \alpha_{j-1}$), and $x^{\prime \prime}>x^{\prime}>0$ then

$$
\left|\int_{x^{\prime}}^{x^{\prime \prime}} \phi(t) d t\right| \leqq \sum_{j}^{i}\left|I_{k}\right|=O\left(\sum_{j}^{i} k^{p-r}\right)
$$

By (2-1), $\sum_{j}^{i} k^{p-r}=o(1)$, for $i, j \rightarrow \infty$, hence $\phi(t)$ is integrable in Denjoy-Perron's sense, and the point $t=0$ is the only point of nonsummability.

Let

$$
\phi(t) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n t
$$

where

$$
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} \phi(t) \cos n t d t
$$

First, we take c_{2} arbitrarily, then we can find a positive integer $k_{1}(>2)$ such that $\left|\int_{\alpha_{2}}^{\pi} \phi(t) \cos \left\{\left(k_{1}!\right)^{r} t\right\} d t\right|<1$; then put $c_{k}=0$ for $2<k<k_{1}$ and $c_{k_{1}}=\left(k_{1}!\right)^{r} k_{1}^{p-r}$.

Next, we can find $k_{2}\left(>k_{1}\right)$ such that

$$
\left|\int_{\alpha_{k_{1}}}^{\pi} \phi(t) \cos \left\{\left(k_{2}!\right)^{r} t\right\} d t\right|<1
$$

then put $c_{k}=0$ for $k_{1}<k<k_{2}$ and $c_{k_{2}}=\left(k_{2}!\right)^{r} k_{2}^{p-r}$, and so on.
Proceeding in this way we get a sequence of positive integers $\left\{k_{i}\right\}$ such that $\quad\left|\int_{\alpha_{k_{i-1}}}^{\pi} \phi(t) \cos \left\{\left(k_{i}!\right)^{r} t\right\} d t\right|<1$, where $c_{k}=0$ for $k_{i-1}<k<k_{i}$ and $c_{k_{i}}=\left(k_{i}!\right)^{r} k_{i}^{p-r}$.

Hence $\phi(t)$ is completely determined in $(-\pi, \pi)$.
Now

$$
\begin{align*}
a_{\left(k_{i}\right) r} & =\frac{2}{\pi} \int_{0}^{\pi} \phi(t) \cos \left\{\left(k_{j}!\right)^{r} t\right\} d t \\
& =\frac{2}{\pi} \int_{0}^{\alpha} k_{i}+\frac{2}{\pi} \int_{\alpha_{k_{i}}}^{\alpha} k_{i-1}+\frac{2}{\pi} \int_{\alpha_{k_{i-1}}}^{\pi} \\
& =\frac{2}{\pi} J_{1}+\frac{2}{\pi} J_{2}+\frac{2}{\pi} J_{3} .
\end{align*}
$$

Then

$$
J_{3}=O(1)
$$

Let

$$
\phi_{1}(t)=\int_{0}^{t} \phi(u) d u=O(1)
$$

for $0<t<\pi$, then

$$
\begin{align*}
J_{1} & =\left[\phi_{1}(t) \cos \left\{\left(k_{i}!\right)^{r} t\right]\right]_{0}^{a_{i}}+\left(k_{i}!\right)^{r} \int_{0}^{a_{k_{i}}} \phi_{1}(t) \sin \left\{\left(k_{i}!\right)^{r} t\right\} d t \\
& =O(1)+O\left[\left(k_{i}!\right)^{r} \alpha_{k_{i}}\right]=O\left[\left(k_{i}!\right)^{\delta_{r}}\right] .
\end{align*}
$$

At last, we have

$$
\begin{align*}
J_{2} & =\int_{\alpha_{k_{i}}}^{\alpha_{k_{i-1}}} \phi(t) \cos \left\{\left(k_{i}!\right)^{r} t\right\} d t=\int_{\alpha_{k_{i}}}^{\alpha_{k_{i-1}}} \phi(t) \cos \left\{\left(k_{i}!\right)^{r} t\right\} d t \\
& =c_{k_{i}} \int_{\alpha_{k_{i}}}^{\alpha_{k_{i-1}}} \cos ^{2}\left\{\left(k_{i}!\right)^{r} t\right\} d t \\
& =\frac{1}{2} c_{k_{i}}\left(\alpha_{k_{i-1}}-\alpha_{k_{i}}\right)+\frac{1}{2} c_{k_{i}} \int_{\alpha_{k_{i}}}^{\alpha}{ }_{k_{i-1}} \cos \left\{2\left(k_{i}!\right)^{r} t\right\} d t \\
& =\frac{1}{2}\left(k_{i}!\right)^{r} k_{i}^{p-r} \frac{\pi\left(k_{i}^{r-r \delta}-1\right)}{\left(k_{i}!\right)^{r-r \delta}}+\frac{c_{k_{i}}}{2\left(k_{i}!\right)^{r}}\left[\sin \left\{2\left(k_{i}!\right)^{r} t\right\}\right]_{\alpha_{k_{i}}}^{\alpha} k_{i-1} \\
& =\frac{\pi}{2}\left(k_{i}!\right)^{r \delta}\left(k_{i}^{p-r \delta}-k_{i}^{p-r}\right)+o(1) .
\end{align*}
$$

By (2•4), (2.5), (2•6), (2.7) we have

$$
a_{\left(k_{i} \mid\right) r}=\left(k_{i}!\right)^{r \delta} k_{i}^{p-r \delta}+O\left[\left(k_{i}!\right)^{r \delta}\right] .
$$

Hence $\varlimsup_{n \rightarrow \infty} \frac{a_{n}}{n^{\delta}}=\infty$, when $0<\delta<1$. By a theorem due to Steinhaus, ${ }^{1)}$

$$
\varlimsup_{n \rightarrow \infty}\left|\frac{a_{n}}{n^{\delta}} \cos n x\right|=\infty,
$$

almost everywhere in $(-\pi, \pi)$. Thereforethe series $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{\delta}} \cos n x$ is divergent almost everywhere.

Lastly, by a Riesz's theorem, ${ }^{2}$) the Fourier-Denjoy series (2-2) just defined is not summable $(C, \delta)(0<\delta<1)$ almost everywhere, while it is summable ($C, 1$) almost everywhere. ${ }^{34)}$

1) Rajchman: Fund. math., 3 (1922), 301.
2) Hardy and Riesz: General theory of Dirichlet's series, p. 33.
3) Hobson: Theory of function, vol. II, p. 573.
4) Since I have written this paper, I found that Prof. Titchmarsh (Proc. London Math. Soc., 22 (1924), p. XXV.) constructed an example such that the coefficients of Fourier-Denjoy series of an even function satisfy $a_{n} \neq o\{n \lambda(n)\}$, where $\lambda(n)$ is any positive sequence, such that $\lambda(n) \rightarrow 0$ and $n \lambda(n) \rightarrow \infty$. By this example, we can assert that n^{-1} is the "best possible" convergence factor of the Fourier-Denjoy series.
