14. Kinematic Connections and Their Application to Physics.

By Tôyomon HOSOKAWA.

Mathematical Institute, Hokkaido Imperial University, Sapporo. (Comm. by M. FUJIWARA, M.I.A., Feb. 12, 1934.)

Recently a new physical theory has been developed by O. Veblen,¹⁾ J. A. Schouten²⁾ and others in which the principal point is founded on a projective connection. In the present paper we shall develop some connections in the manifold admitting the kinematic transformations, and shall give a unification of the gravitational field not only with the electromagnetic, but also with Dirac's theory of material waves.

Let the equations

(1. a) $\overline{x}^i = \overline{x}^i (x^0, x^1, x^2, x^3, x^4), \quad i = 1, 2, 3, 4,$

be the transformations of the coördinates in X_4 , where x^0 is a parameter, and we shall define the transformation of the parameter by

(1. b) $\overline{x}^0 = x^0$.

These transformations (1. a) and (1. b) are collectively called a *kinematic* transformation in the manifold X_4 .

The kinematic transformation (1. a), (1. b) can be regarded as follows. An ordered set of the five independent real variables x^{ν} $(\nu=0, 1, 2, 3, 4)$,³⁾ of which at least one is not zero may be considered as a coördinate system of a 5-dimensional manifold X_5 except the original point. Two points x^{ν} and y^{ν} are called coincident if a factor exists, so that $y^{\nu} = \sigma x^{\nu}$. Each totality of all points coincident with any point is called a spot. The totality of all ∞^4 spots is called the 4dimensional projective manifold P_4 . The set of all points of the P_4 , with the exception of those on a single 3-dimensional projective manifold P_3 contained in the P_4 , is called the affine manifold A_4 . By choosing the P_3 as the hyperplane at infinity, the equation of the P_3 may be written in the form $x^0=0$. Thus (1. a) and (1. b) are transformations of coördinates in A_4 , and by them P_3 is transformed into itself.

¹⁾ O. Veblen; Projektive Relativitätstheorie. Julius Springer, 1933.

²⁾ J. A. Schouten und D. van Dantzig: Generelle Feldtheorie, Zeit. für Physik, **78** (1932), 639–667.

³⁾ Let us make the convention that Greek indices run over the range 0, 1, 2, 3, 4, whereas the Latin indices take on the values 1, 2, 3, 4 only.

T. HOSOKAWA.

If V^{*} and \overline{V}^{*} are functions of the x's and \overline{x} 's respectively such that

(2)
$$\overline{V}^{0} = V^{0}, \quad \overline{V}^{i} = \frac{\partial \overline{x}^{i}}{\partial x^{j}} V^{j} + \frac{\partial \overline{x}^{i}}{\partial x^{0}} V^{0}$$

in consequence of (1), V^{α} and \overline{V}^{α} are the components of a *kinematic* contravariant vector in the coördinate systems (x) and (\overline{x}) respectively. A *kinematic covariant vector* is a set of the quantities W_{α} which is transformed by (1) into

(3)
$$\overline{W}_0 = W_0 + \frac{\partial x^i}{\partial \overline{x}^0} W_i, \qquad \overline{W}_i = \frac{\partial x^j}{\partial \overline{x}^i} W_j.$$

A similar observation is applied to the *kinematic tensors* of the higher order.¹⁾

With any point (x^1, x^2, x^3, x^4) of X_4 there is associated a tangential space $E_4(dx^1, dx^2, dx^3, dx^4)$. The point $dx^i=0$ is identified with the point x^i and will be called the point of contact. These tangential spaces can be improved into ordinary projective spaces \overline{E}_4 by introducing in each of them a hyperplane \overline{E}_3 at infinity in the usual manner.

Let a fixed value ξ of the parameter x^0 correspond to a point P (x^1, x^2, x^3, x^4) of the X_4 . Then in a neighbourhood of the point (ξ , x^1, x^2, x^3, x^4) we shall introduce a 5-dimensional euclidean space E_5 , having (ξ , x^1 , x^2 , x^3 , x^4) as origin. In particular we assume that the coördinates in E_5 are connected by the formulas $X^0 = dx^0$, $X^i = dx^i$. Then the point $dx^0 = 0$ and $dx^i = 0$ is the original point in the E_5 .

Let us choose a tangential projective space \overline{E}_4 at the point, whose coördinates are $X^i=0$, $X^0=dx^0$ in E_5 . Then each of the straight lines through the origin of E_5 cuts \overline{E}_4 in one and only one point. The coördinates of the point (X^0, X^i) can be regarded as the homogeneous coördinates for the points of \overline{E}_4 .

In every local tangential projective space \overline{E}_4 we introduce a nondegenerate quadric $G^{\alpha\beta}U_{\alpha}U_{\beta}=0$, which does not pass through the contact point (1, 0, 0, 0, 0), where U's are the hyperplane coördinates in \overline{E}_4 . The quadric is determined uniquely by a symmetric kinematic tensor $G^{\alpha\beta}$. Hence in each local \overline{E}_4 we can consider a non-euclidean geometry, by introducing the quadric as the absolute. The envelope of all hyperplanes meeting a hyperplane $[U_0=1, U_i=0]$ at a constant angle ω is a hypersphere, specially the equation of the hypersphere having the angle $\omega=0$ is given by the equation

50

¹⁾ T. Hosokawa: Tôkyo Butsuri-gakko Zasshi, 42, No. 500 (July, 1933), p. 376– 382. Since this paper was completed, the author has seen the same definition used by V. Hlavatý: Über eine Art der Punktkonnexion, Math. Zeit. **38** (1933), 135–145.

No. 2.] Kinematic Connections and their Application to Physics.

(4)
$$\{G^{\alpha\beta} - (G^{0\alpha}G^{0\beta})/G^{00}\} U_{\alpha}U_{\beta} = 0.$$

This hypersphere touches the absolute at the curve of intersection of the absolute with a *definite hyperplane*

$$G^{0\alpha}U_{\alpha}=0.$$

Putting

$$\frac{G^{lphaeta}}{G^{00}} - \frac{G^{0lpha}G^{0eta}}{G^{00}G^{00}} = g^{lphaeta},$$

we see that $g^{0x}=0$, and that this quadric (4) may be written $g^{ij}U_iU_j=0$.

Let us denote by |g| the determinant of the g^{ij} 's, by g_{jk} the cofactors of g^{jk} divided by |g|, then we have $g^{ij}g_{jk} = \delta_k^i$. So that under a pure transformation of coördinates

(6)
$$\overline{x}^0 = x^0 = \text{const.}, \quad \overline{x}^i = \overline{x}^i (x^1, x^2, x^3, x^4),$$

the components g_{ij} are transformed like components of an arbitrary tensor. Then g_{ij} may be regarded as the fundamental tensor of a Riemannian space.

Putting also $G^{0^{\alpha}}/G^{00} = \varphi^{\alpha}$, we get $\varphi^{\alpha}U_{\alpha} = 0$ from (5), as the equation of a definite hyperplane. Then φ^{α} is a contravariant vector and $\varphi^{0} = 1$, and under a transformation (6) the components φ^{i} are transformed in the form

$$\overline{\varphi}^i = rac{\partial \overline{x}^i}{\partial x^j} \varphi^j.$$

We shall interpret the coefficients g_{ij} and vectors φ_i as the gravitational and electromagnetic potentials respectively, where $\varphi_i = g_{ij}\varphi^j$.

Let us now put $(G^{00})^{\frac{1}{2}} = \phi$, then we obtain $G^{\alpha\beta} = \phi^2 (g^{\alpha\beta} + \phi^{\alpha} \phi^{\beta}) = \phi^2 \gamma^{\alpha}$, where $\gamma^{\alpha\beta} = g^{\alpha\beta} + \phi^{\alpha} \phi^{\beta}$. Let $\gamma_{\alpha\beta}$ be defined by the equation $\gamma^{\alpha\beta} \gamma_{\beta\delta} = \delta^{\alpha}_{\delta}$, then we get

$$\gamma_{ij} = g_{ij}$$
, $\gamma_{00} = 1 + g_{ij} \varphi^i \varphi^j$, $\gamma_{0i} = -g_{ij} \varphi^j$

We will define the connections of the contravariant and covariant vector by the following equations:

$$\nabla_{\mu}V^{\nu} = \partial_{\mu}V^{\nu} + \Gamma_{\lambda\mu}V^{\lambda}$$
 and $\nabla_{\mu}W_{\lambda} = \partial_{\mu}W_{\lambda} - \Gamma_{\lambda\mu}W_{\nu}$.

The covariant derivatives $\nabla_{\mu}V^{\nu}$ are the components of a mixed tensor of the second order. Hence for the transformation (1), $\overline{\Gamma}^{\nu}_{\lambda\mu}$ and $\Gamma^{\nu}_{\lambda\mu}$ must satisfy the equations

$$\bar{\Gamma}^{\mathrm{r}}_{\alpha\beta}\frac{\partial x^{\lambda}}{\partial \bar{x}^{\mathrm{r}}} = \frac{\partial^2 x^{\lambda}}{\partial \bar{x}^{\alpha}\partial \bar{x}^{\beta}} + \Gamma^{\lambda}_{\mu\nu}\frac{\partial x^{\mu}}{\partial \bar{x}^{\alpha}}\frac{\partial x^{\nu}}{\partial \bar{x}^{\beta}} \,.$$

We will now define the parameters $\Gamma^{\lambda}_{\mu\nu}$ by the following expressions:

51

T. HOSOKAWA.

$$\Gamma^{\lambda}_{\mu\nu} = \frac{1}{2} \gamma^{\lambda\sigma} \left(\frac{\partial \gamma_{\nu\sigma}}{\partial x^{\mu}} + \frac{\partial \gamma_{\sigma\mu}}{\partial x^{\nu}} - \frac{\partial \gamma_{\mu\nu}}{\partial x^{\sigma}} \right),$$

then the equations $\nabla_{\mu} \gamma^{\lambda \nu} = 0$ are satisfied identically.

We introduce the hypercomplex numbers of Dirac a^{λ} defined by the equations $a^{(\lambda}a^{\mu)} = G^{\lambda\mu}$, $(a^{\lambda}a^{\mu})a^{\nu} = a^{\lambda}(a^{\mu}a^{\nu})$, $a^{0} = a^{1}a^{2}a^{3}a^{4}$, and consider a local spin-space in each local \overline{E}_{4} . Then each a^{λ} may be regarded as a contra- or covariant spinor with valence 2 and may now be written $a^{\lambda}A_{B}$ (A, B, C, D=5, 6, 7, 8). If $\Lambda^{A}_{B\mu}$ are the parameters of the covariant differentiation of the contravariant spin-vectors in space-time, then we obtain the Dirac-equation

$$\frac{h}{i}\alpha^{\lambda}\nabla_{\lambda}\psi^{A}=0.$$