14. Kinematic Connections and Their Application to Physics.

By Tôyomon Hosokawa.
Mathematical Institute, Hokkaido Imperial University, Sapporo. (Comm. by M. Fujiwara, m.I.A., Feb. 12, 1934.)

Recently a new physical theory has been developed by 0 . Veblen, ${ }^{1)}$ J. A. Schouten ${ }^{2)}$ and others in which the principal point is founded on a projective connection. In the present paper we shall develop some connections in the manifold admitting the kinematic transformations, and shall give a unification of the gravitational field not only with the electromagnetic, but also with Dirac's theory of material waves.

Let the equations
(1. a) $\quad \bar{x}^{i}=\bar{x}^{i}\left(x^{0}, x^{1}, x^{2}, x^{3}, x^{4}\right), \quad i=1,2,3,4$,
be the transformations of the coördinates in X_{4}, where x^{0} is a parameter, and we shall define the transformation of the parameter by

(1. b)
 $$
\bar{x}^{0}=x^{0} .
$$

These transformations (1. a) and (1. b) are collectively called a kinematic transformation in the manifold X_{4}.

The kinematic transformation (1. a), (1. b) can be regarded as follows. An ordered set of the five independent real variables x^{v} ($\nu=0,1,2,3,4),{ }^{3}$) of which at least one is not zero may be considered as a coördinate system of a 5 -dimensional manifold X_{5} except the original point. Two points x^{ν} and y^{ν} are called coincident if a factor exists, so that $y^{\nu}=\sigma x^{2}$. Each totality of all points coincident with any point is called a spot. The totality of all ∞^{4} spots is called the 4dimensional projective manifold P_{4}. The set of all points of the P_{4}, with the exception of those on a single 3 -dimensional projective manifold P_{3} contained in the P_{4}, is called the affine manifold A_{4}. By choosing the P_{3} as the hyperplane at infinity, the equation of the P_{3} may be written in the form $x^{0}=0$. Thus (1. a) and (1. b) are transformations of coordinates in A_{4}, and by them P_{3} is transformed into itself.

[^0]If V^{α} and \bar{V}^{α} are functions of the x 's and \bar{x} 's respectively such that

$$
\begin{equation*}
\bar{V}^{0}=V^{0}, \quad \bar{V}^{i}=\frac{\partial \bar{x}^{i}}{\partial x^{i}} V^{j}+\frac{\partial \overline{x^{i}}}{\partial x^{0}} V^{0} \tag{2}
\end{equation*}
$$

in consequence of (1), V^{α} and \bar{V}^{a} are the components of a kinematic contravariant vector in the coördinate systems (x) and (\bar{x}) respectively. A kinematic covariant vector is a set of the quantities W_{α} which is transformed by (1) into

$$
\begin{equation*}
\bar{W}_{0}=W_{0}+\frac{\partial x^{i}}{\partial \bar{x}^{0}} W_{i}, \quad \bar{W}_{i}=\frac{\partial x^{j}}{\partial \bar{x}^{i}} W_{j} . \tag{3}
\end{equation*}
$$

A similar observation is applied to the kinematic tensors of the higher order. ${ }^{1)}$

With any point ($x^{1}, x^{2}, x^{3}, x^{4}$) of X_{4} there is associated a tangential space $E_{4}\left(d x^{1}, d x^{2}, d x^{3}, d x^{4}\right)$. The point $d x^{i}=0$ is identified with the point x^{i} and will be called the point of contact. These tangential spaces can be improved into ordinary projective spaces \bar{E}_{4} by introducing in each of them a hyperplane \bar{E}_{3} at infinity in the usual manner.

Let a fixed value ξ of the parameter x^{0} correspond to a point P ($x^{1}, x^{2}, x^{3}, x^{4}$) of the X_{4}. Then in a neighbourhood of the point $(\xi$, $x^{1}, x^{2}, x^{3}, x^{4}$) we shall introduce a 5 -dimensional euclidean space E_{5}, having ($\xi, x^{1}, x^{2}, x^{3}, x^{4}$) as origin. In particular we assume that the coördinates in E_{5} are connected by the formulas $X^{0}=d x^{0}, X^{i}=d x^{i}$. Then the point $d x^{0}=0$ and $d x^{i}=0$ is the original point in the E_{5}.

Let us choose a tangential projective space \bar{E}_{4} at the point, whose coördinates are $X^{i}=0, X^{0}=d x^{0}$ in E_{5}. Then each of the straight lines through the origin of E_{5} cuts \bar{E}_{4} in one and only one point. The coördinates of the point (X^{0}, X^{i}) can be regarded as the homogeneous coördinates for the points of \boldsymbol{E}_{4}.

In every local tangential projective space \bar{E}_{4} we introduce a nondegenerate quadric $G^{\alpha \beta} U_{\alpha} U_{\beta}=0$, which does not pass through the contact point ($1,0,0,0,0$), where U 's are the hyperplane coördinates in \bar{E}_{4}. The quadric is determined uniquely by a symmetric kinematic tensor $G^{\alpha \beta}$. Hence in each local \bar{E}_{4} we can consider a non-euclidean geometry, by introducing the quadric as the absolute. The envelope of all hyperplanes meeting a hyperplane [$U_{0}=1, U_{i}=0$] at a constant angle ω is a hypersphere, specially the equation of the hypersphere having the angle $\omega=0$ is given by the equation

[^1]\[

$$
\begin{equation*}
\left\{G^{\alpha \beta}-\left(G^{0 \alpha} G^{0 \beta}\right) / G^{00}\right\} U_{\alpha} U_{\beta}=0 . \tag{4}
\end{equation*}
$$

\]

This hypersphere touches the absolute at the curve of intersection of the absolute with a definite hyperplane

$$
\begin{equation*}
G^{0 \alpha} U_{\alpha}=0 . \tag{5}
\end{equation*}
$$

Putting

$$
\frac{G^{\alpha \beta}}{G^{00}}-\frac{G^{0 \alpha} G^{0 \beta}}{G^{00} G^{00}}=g^{\alpha \beta},
$$

we see that $g^{0 \alpha}=0$, and that this quadric (4) may be written $g^{i j} U_{i} U_{j}=0$.
Let us denote by $|g|$ the determinant of the $g^{i j}$ s, by $g_{j k}$ the cofactors of $g^{j k}$ divided by $|g|$, then we have $g^{i j} g_{j k}=\delta_{k}^{i}$. So that under a pure transformation of coördinates

$$
\begin{equation*}
\bar{x}^{0}=x^{0}=\text { const., } \quad \overline{x^{i}}=\bar{x}^{i}\left(x^{1}, x^{2}, x^{3}, x^{4}\right), \tag{6}
\end{equation*}
$$

the components $g_{i j}$ are transformed like components of an arbitrary tensor. Then $g_{i j}$ may be regarded as the fundamental tensor of a Riemannian space.

Putting also $G^{0 \alpha} / G^{00}=\varphi^{\alpha}$, we get $\varphi^{\alpha} U_{\alpha}=0$ from (5), as the equation of a definite hyperplane. Then φ^{α} is a contravariant vector and $\varphi^{0}=1$, and under a transformation (6) the components φ^{i} are transformed in the form

$$
\bar{\varphi}^{i}=\frac{\partial \bar{x}^{i}}{\partial x^{j}} \varphi^{j}
$$

We shall interpret the coefficients $g_{i j}$ and vectors φ_{i} as the gravitational and electromagnetic potentials respectively, where $\varphi_{i}=g_{i j} \varphi^{j}$.

Let us now put $\left(G^{00}\right)^{\frac{1}{2}}=\phi$, then we obtain $G^{\alpha \beta}=\phi^{2}\left(g^{\alpha \beta}+\varphi^{\alpha} \varphi^{\beta}\right)=\phi^{2} \gamma^{\alpha}$, where $\gamma^{\alpha \beta}=g^{\alpha \beta}+\varphi^{\alpha} \varphi^{\beta}$. Let $\gamma_{\alpha \beta}$ be defined by the equation $\gamma^{\alpha \beta} \gamma_{\beta \delta}=\delta_{\delta}^{\alpha}$, then we get

$$
\gamma_{i j}=g_{i j}, \quad \gamma_{00}=1+g_{i j} \varphi^{i} \varphi^{j}, \quad \gamma_{0 i}=-g_{i j} \varphi^{j}
$$

We will define the connections of the contravariant and covariant vector by the following equations:

$$
\nabla_{\mu} V^{\nu}=\partial_{\mu} V^{\nu}+\Gamma_{\lambda \mu}^{\nu} V^{\lambda} \quad \text { and } \quad \nabla_{\mu} W_{\lambda}=\partial_{\mu} W_{\lambda}-\Gamma_{\lambda \mu}^{\nu} W_{\nu}
$$

The covariant derivatives $\nabla_{\mu} V^{\nu}$ are the components of a mixed tensor of the second order. Hence for the transformation (1), $\bar{\Gamma}_{\lambda \mu}^{\nu}$ and $\Gamma_{\lambda \mu}^{\nu}$ must satisfy the equations

$$
\bar{\Gamma}_{\alpha \beta}^{r} \frac{\partial x^{\lambda}}{\partial \bar{x}^{\top}}=\frac{\partial^{2} x^{\lambda}}{\partial \bar{x}^{\alpha} \partial \bar{x}^{\beta}}+\Gamma_{\mu \nu}^{\lambda} \frac{\partial x^{\mu}}{\partial \bar{x}^{\alpha}} \frac{\partial x^{\nu}}{\partial \bar{x}^{\beta}} .
$$

We will now define the parameters $\Gamma_{\mu \nu}^{\lambda}$ by the following expressions:

$$
\Gamma_{\mu \nu}^{\lambda}=\frac{1}{2} \gamma^{\lambda \sigma}\left(\frac{\partial \gamma_{\nu \sigma}}{\partial x^{\mu}}+\frac{\partial \gamma_{\sigma \mu}}{\partial x^{\nu}}-\frac{\partial \gamma_{\mu \nu}}{\partial x^{\sigma}}\right)
$$

then the equations $\nabla_{\mu} \gamma^{\lambda \nu}=0$ are satisfied identically.
We introduce the hypercomplex numbers of Dirac a^{λ} defined by the equations $\left.a^{(\lambda} a^{\mu}\right)=G^{\lambda \mu},\left(a^{\lambda} a^{\mu}\right) a^{\nu}=a^{\lambda}\left(a^{\mu} a^{\nu}\right), a^{0}=a^{1} a^{2} a^{3} a^{4}$, and consider a local spin-space in each local \bar{E}_{4}. Then each a^{λ} may be regarded as a contra- or covariant spinor with valence 2 and may now be written $\alpha_{. . A_{B}}^{\alpha}(A, B, C, D=5,6,7,8)$. If $\Lambda_{B \mu}^{A}$ are the parameters of the covariant differentiation of the contravariant spin-vectors in space-time, then we obtain the Dirac-equation

$$
\frac{h}{i} \alpha^{\lambda} \nabla_{\lambda} \psi^{\boldsymbol{A}}=0 .
$$

[^0]: 1) O. Veblen: Projektive Relativitätstheorie. Julius Springer, 1933.
 2) J. A. Schouten und D. van Dantzig: Generelle Feldtheorie, Zeit. für Physik, 78 (1932), 639-667.
 3) Let us make the convention that Greek indices run over the range $0,1,2,3$, 4, whereas the Latin indices take on the values $1,2,3,4$ only.
[^1]: 1) T. Hosokawa: Tôkyo Butsuri-gakko Zasshi, 42, No. 500 (July, 1933), p. 376382. Since this paper was completed, the author has seen the same definition used by V. Hlavatý : Über eine Art der Punktkonnexion, Math. Zeit. 38 (1933), 135-145.
