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122. Extensionof Duhamel’s Theorem.

By Takaharu NOMTSU.
(Comm. by T. OKADA, M.I.A., Nov. 12, 1935.)

Introduction. Regarding the conduction of heat we have the so-
called Duhamel Theorem, which will at once give the solution when a
solid initially at zero temperature, is exposed thereafter to any given
variable temperature at the surface, if we know the solution for the
solid whose surface is kept at a constant temperature other than the
initial value.

Since Duhamel) first presented the theorem, the method of proof
has been much improved by Riemann,2) Carlslaw3 and others, but they
restricted themselves to heat-conduction corresponding to the differential

equation -- p2 and the boundary temperature F(t).

In other branches of mathematical physics, however, no such general
rule has been pronounced, and even special examples treated in similar
manner are very rarely found, so far as the present writer knows.

The writer’s new theorem here to be introduced, is a wide exten-
sion of Duhamel’s, applicable not only to heat-conduction but also to
several domains of physics and even pure mathematics. Moreover it
may be used for the varying action or condition of nteio bodily
nature, as well as of boundary nature such as the surface temperature
in Duhamel’s theorem. The writer determines the limits within which
the method similar to Duhamel theorem can be applied.

Definition. Let ,x, , be independent variables. Let a
quantity W(, , ) be such a function as will be influenced by
any other quantity F(, 2, ) which may be some "action" or
"circumstance" in physical meaning.

Let W, W, W3, W be the values of W corresponding to
F’s several values F, F2, F3, F, provided that all other circum-
stances remain the same.

If, for the value of F
F=F,+F2+ F3 + +F,

we have the corresponding value of W such that

W= WI- W2-[- W3- -]-Win,

then we define the quantity W to be additive or superposable with
respect to F.

Theorem. Let a function W(x, x,, x,) be holomorphic for x
and additive with respect to F{, x,, ), and let

W=0 ,) F=0 for x< O.

1) Journ. d. L’Ecole Polytech, 14, 20-29 (1833).
2) Partielle Diff. Gleichungen IL 102-105 (1901).
3) The Conduction of Heat, 17 (1921).
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If the solution of W for 931 >0, corresponding to an action constant
with respect to Zl

F($1, z2, z, z), $1= parameter,

be known, viz.
W(I, 931, 932, 933,

then the solution corresponding to an action variable with 931

F(x, x, :r,,
will be given by

W---z,W(el, 931--el, 932,

Proof. By assumption we know that if

F=0 for - Xl<0
($, x, x, x.) for 0 <Xl,

the corresponding W is given by

W=(1, x, x2, x3, x,)

Then if F=0 for

(, x2, x3, x.) for
we shall have

W-i/’(l, 931- 1, 932, 933, 93n) for x>I,
since, the condition is the same as before except only that the co-ordinate
origin of x is shifted by the amount .

Similarly if

F=0 for Xl "< I 4- d$1

(, x, x, x,) for x 1+d,
e corresnding W will be

W=(, Xl-$-dl, x, x, x.) for x>1+dl.
Hence if

F= 0 for 931 <7 1
"-(1, 932, 933, x,) from x= to
0 for x>$+ dl,

the value of W for X >14-d1 will be given by

W-- ff(l, 931 1, 932, 933, ,93n) /’(1, 931 1 d$1, x2, xs, ,93.)

r(l, 931--1, 932, 933, 93n)d$1,

remembering that the quantity W is additive with respect to F.
Thus, finally if the action is variable with Xl, i.e.,

F )(Xl, x2, 938, 93n),
divide Xl into many small intervals, and obtain corresponding elementary

1) If W=C (a constant) for xl=0, consider W-C as a new W and test its
additiveness.



No. 9.] Extension of Duhamel’s Theorem. 361

influences and sum them up. The result will be

Jo
provided that W is additive with respect to F.

Physical examples. The fundamental equation specifying W may
be a differential equation or an integral or of any other form; but if
the equation is a linear differential equation, it will be very favorable
for additiveness of W. In such cases, let us give a few examples in
which the action F makes the quantity W additive.

(Ex. 1) When the equation of W is a linear diff. eq. without
second member of independent variables only.

(a) Case in which the boundary value of W is given as F :---The
ordinary Duhamel theorem for heat-conduction is an example of this kind.

(b) Case where given F is a boundary surface-action proportional
to a derivative of W :--The writer’s theory) of the drift-current in the
ocean will afford an example of this sort. The eq. of motion of the

current w is w
__ __

2iw i=/ 1
at p az-with the conditions
w--0 at t=0

and ow/Oz= -iT/z at z=O
where T is the tangential stress of the wind.

Since such current w is obviously additive with respect to T, the
present theorem may be applied, and the writer actually determined
the current for variable T in that way, the result being coincident
with Fjeldstad’s solution) obtained by another method.

Kelvin’s theory) of the electric telegraph determines the mode of
electric transmission when the key is put at momentary contact, but
we can evidently extend it to a more general case by the present
theorem, (a)or (b).

(Ex. 2) Wn F is an internal bodily action and is given as the
second member of the linear diff. eq. of W.

The writer’s theory of slope- or barometric current in the ocean
will afford examples. The equation of motion of the current due to a

slope - is a--W-W t a’w 2iw +igr.
at p az-The solution of w when r varies with time t was obtained from the

solution for constant r. The writer used the theorem in his theory of
tunamis) also.

Another example will be found in Proudman’s formula) (2.71) given
in his paper on "The effects on the sea of changes in atmospheric
pressure."
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