66. An Extention of the Phragmén-Lindelöf's Theorem.

By Unai MINAMI.

(Comm. by S. KAKEYA, M.I.A., July 12, 1937.)

Theorem 1. Let f(z) be a function defined in a domain D, which satisfies the following conditions:

1°. f(z) is holomorphic in D.

2°. To each point ζ on the boundary C of D with exception of a point z_0 , and to each positive number $\varepsilon > 0$, we can associate a circle with the center ζ , in which the following inequality is verified:

$$|f(z)| \leq m + \epsilon$$
.

3°. z_0 is a limiting point of the boundary C of D.

4°. In a neighbourhood of z_0 , f(z) is univalent.

Then we have $|f(z)| \leq m$ throughout in D.

Proof. Let us describe a circle S with the center z_0 ; $|z-z_0|=r$ such that f(z) be univalent in the common part of the inside of S and D. Then the domain D is decomposed into at most an enumerable infinity of domains, whose boundaries are contained in the boundary C of D and the circle S. If the following lemma is established, we can see that in each of those domains, |f(z)| is inferior to a fixed constant (valid for all sub-domains), and therefore, |f(z)| is limited in D. Then, applying the Phragmén-Lindelöf's theorem, we can conclude that $|f(z)| \leq m$ throughout in D.

Lemma. Let f(z) be a function defined in D with the following properties:

1°. f(z) is holomorphic and univalent in D.

 2° . z_0 is a limiting point of the boundary of D.

3°. For every frontier point ζ of D distinct from z_0 , we have

$$\overline{\lim} |f(z)| \leq m.$$

Then we have $|f(z)| \leq m$ throughout in D.

Proof of lemma. Let us denote by \mathfrak{D} the set of all the values of f(z), z in D. We shall prove first, that there exist a radius R such that we can not trace any Jordan simple closed curve which contains the circle |w|=R inside, and which is situated in \mathfrak{D} .

In fact, suppose that there exists no such radius R, then we have a sequence of Jordan simple closed curves $C_n(n=1, 2, 3, \ldots)$, in \mathfrak{D} , with the following properties:

1) C_n tend uniformly to ∞ .

2) C_{n+1} contains C_n inside (n=1, 2, 3,).

Then consider the curves Γ_n in D such as C_n is image of Γ_n by means of f(z). Γ_n is any Jordan simple closed curve, and must satisfy the following properties:

1) Γ_n tend uniformly to z_0 .

2) We can choice a subsequence $\Gamma_{n_{\nu}}$ such that $\Gamma_{n_{\nu}}$ contains $\Gamma_{n_{\nu+1}}$ in its inside.

Moreover, we can suppose that between $\Gamma_{n_{\nu}}$ and $\Gamma_{n_{\nu+1}}$ (for all $\nu=1$, 2,), there exists at least a frontier point ζ_{ν} of D, distinct from z_0 . Then we can trace a curve in D, which starts from Γ_{n_2} , passes near an accessible frontier point and ends in Γ_{n_3} , without intersecting any $\Gamma_{n_{\nu}}$ ($\nu \neq 2$, 3). The image of this curve in \mathfrak{D} , goes from C_{n_2} to the point situated near the circle |w|=m, and ends in C_{n_3} , without intersecting any $C_{n_{\nu}}$ ($\nu=2$, 3).

This is evidently impossible, because it must intersect C_{n_1} . Thus the proposition is demonstrated: there exist a radius R, such that we can not trace any Jordan simple closed curve which contains the circle |w|=R inside, and which is situated in \mathfrak{D} . Our lemma will be established, if we prove the following theorem:

Theorem 2. Let f(z) be a function defined in a domain D, and denote by \mathfrak{D} the set of all the values of f(z), z in D. Suppose that f(z) satisfies the following conditions:

- 1°. f(z) is holomorphic in D.
- 2°. To each frontier point ζ , with the exception of a point z_0 , and to each positive number $\varepsilon > 0$, we can associate a circle with the center ζ , in which the following inequality is verified

$$|f(z)| \leq m + \epsilon$$
.

3°. There exist a radius R such that we can not describe any Jordan simple closed curve in \mathfrak{D} , which contain the circle |w|=R inside.

Then we have $|f(z)| \leq m$ throughout in D.

Proof. Let R_1 be any positive number greater than the radius R, and describe a circle $|w| = R_1$, with the radius R_1 . Then we can say that there exists, on this circle, at least one point $w_1: |w_1| = R_1$, with the following property: we can not describe any Jordan simple closed curve in \mathfrak{D} which starts from $|w| \leq m + \epsilon$, contains w_1 inside and ends in $|w| \leq m + \epsilon$, where ϵ is any positive fixed number.

In fact, if every point w of $|w|=R_1$ possesses at least one such Jordan simple closed curve in \mathfrak{D} , we can describe any Jordan simple closed curve in \mathfrak{D} which contains the circle $|w|=R_1$ inside, which is incompatible with the property of the radius $R < R_1$. Then we have at least two points w_1 and w_2 , $w_1 \neq w_2$, $|w_1|$, $|w_2| > R$, $|w_1|$, $|w_2| > m$, such that we can not describe any Jordan simple closed curve in \mathfrak{D} which contains w_1 or w_2 inside. Transform w_1 , w_2 and ∞ in w-plane into 0, 1, ∞ in U-plane by the linear transformation

$$U=l(w)=\frac{w-w_1}{w_2-w_1}$$
.

The domain \mathfrak{D} and the circle |w| = m will be transformed into a domain \varDelta and a circle T respectively. Let $W = \nu(U)$ be a modular function¹⁾

242

¹⁾ For this notation, see p. ex. G. Julia: Lecons sur les fonctions uniformes. Paris, 1924. p. 29.

No. 7.]

which transform the domain $U \neq 0, 1$ into |W| < 1. Consider the function

$$F(z) = \nu \Big[l\{f(z)\} \Big].$$

As we can not describe any Jordan simple closed curve in \mathfrak{D} which contains w_1 or w_2 inside, the function F(z) is one-valued¹⁾ and analytic in D.

The inside of T in U-plane will be transformed into a domain contained in the circle $|W| < \sigma$, $\sigma < 1$. Therefore, for every point ζ of the frontier C with the exception of z_0 , the following inequality is verified

$$\overline{\lim_{z\to\zeta}} |F(z)| \leq \sigma < 1$$

F(z) is bounded in D. Thus, we have from the Phragmén-Lindelöf's theorem, we have $|F(z)| \leq \sigma$ throughout in D, and hence f(z) will be bounded throughout in D. The same theorem will show us that $|f(z)| \leq m$ throughout in D. Thus, our theorem 2 is proved and consequently the theorem 1 is established.

1) We can take the some values of the fundamental domain of $\nu^{-1}(W)$ and continuate.