66. An Extention of the Phragmén-Lindelöf's Theorem.

By Unai Minami.
(Comm. by S. Kakeya, m.I.A., July 12, 1937.)

Theorem 1. Let $f(z)$ be a function defined in a domain D, which satisfies the following conditions:
$1^{\circ} . f(z)$ is holomorphic in D.
2°. To each point ζ on the boundary C of D with exception of a point z_{0}, and to each positive number $\varepsilon>0$, we can associate a circle with the center ζ, in which the following inequality is verified:

$$
|f(z)| \leq m+\varepsilon
$$

3°. z_{0} is a limiting point of the boundary C of D.
4°. In a neighbourhood of $z_{0}, f(z)$ is univalent. Then we have $|f(z)| \leq m$ throughout in D.

Proof. Let us describe a circle S with the center $z_{0} ;\left|z-z_{0}\right|=r$ such that $f(z)$ be univalent in the common part of the inside of S and D. Then the domain D is decomposed into at most an enumerable infinity of domains, whose boundaries are contained in the boundary C of D and the circle S. If the following lemma is established, we can see that in each of those domains, $|f(z)|$ is inferior to a fixed constant (valid for all sub-domains), and therefore, $|f(z)|$ is limited in D. Then, applying the Phragmén-Lindelöf's theorem, we can conclude that $|f(z)| \leq m$ throughout in D.

Lemma. Let $f(z)$ be a function defined in D with the following properties:
$1^{\circ} . f(z)$ is holomorphic and univalent in D.
2°. z_{0} is a limiting point of the boundary of D.
3°. For every frontier point ζ of D distinct from z_{0}, we have

$$
\varlimsup_{z \rightarrow \zeta}|f(z)| \leq m
$$

Then we have $|f(z)| \leq m$ throughout in D.
Proof of lemma. Let us denote by \mathfrak{D} the set of all the values of $f(z), z$ in D. We shall prove first, that there exist a radius R such that we can not trace any Jordan simple closed curve which contains the circle $|w|=R$ inside, and which is situated in \mathfrak{D}.

In fact, suppose that there exists no such radius R, then we have a sequence of Jordan simple closed curves $C_{n}(n=1,2,3, \ldots \ldots)$, in \mathfrak{D}, with the following properties:

1) C_{n} tend uniformly to ∞.
2) C_{n+1} contains C_{n} inside ($n=1,2,3, \ldots \ldots$).

Then consider the curves Γ_{n} in D such as C_{n} is image of Γ_{n} by means of $f(z) . \quad \Gamma_{n}$ is any Jordan simple closed curve, and must satisfy the following properties:

1) Γ_{n} tend uniformly to z_{0}.
2) We can choice a subsequence $\Gamma_{n_{\nu}}$ such that $\Gamma_{n_{\nu}}$ contains $\Gamma_{n_{\nu+1}}$ in its inside.
Moreover, we can suppose that between $\Gamma_{n_{\nu}}$ and $\Gamma_{n_{\nu+1}}$ (for all $\nu=1$, $2, \ldots \ldots$), there exists at least a frontier point ζ_{ν} of D, distinct from z_{0}. Then we can trace a curve in D, which starts from $\Gamma_{n_{2}}$, passes near an accessible frontier point and ends in $\Gamma_{n_{8}}$, without intersecting any $\Gamma_{n_{\nu}}(\nu \neq 2,3)$. The image of this curve in \mathfrak{D}, goes from $C_{n_{2}}$ to the point situated near the circle $|w|=m$, and ends in $C_{n_{3}}$, without intersecting any $C_{n_{\nu}}(\nu=2,3)$.

This is evidently impossible, because it must intersect $C_{n_{1}}$. Thus the proposition is demonstrated: there exist a radius R, such that we can not trace any Jordan simple closed curve which contains the circle $|w|=R$ inside, and which is situated in \mathfrak{D}. Our lemma will be established, if we prove the following theorem:

Theorem 2. Let $f(z)$ be a function defined in a domain D, and denote by \mathfrak{D} the set of all the values of $f(z), z$ in D. Suppose that $f(z)$ satisfies the following conditions :
$1^{\circ} . f(z)$ is holomorphic in D.
2°. To each frontier point ζ, with the exception of a point z_{0}, and to each positive number $\varepsilon>0$, we can associate a circle with the center ζ, in which the following inequality is verified

$$
|f(z)| \leq m+\varepsilon
$$

3°. There exist a radius R such that we can not describe any Jordan simple closed curve in \mathfrak{D}, which contain the circle $|\boldsymbol{w}|=R$ inside.
Then we have $|f(z)| \leq m$ throughout in D.
Proof. Let R_{1} be any positive number greater than the radius R, and describe a circle $|w|=R_{1}$, with the radius R_{1}. Then we can say that there exists, on this circle, at least one point $w_{1}:\left|w_{1}\right|=R_{1}$, with the following property : we can not describe any Jordan simple closed curve in \mathfrak{D} which starts from $|w| \leq m+\varepsilon$, contains w_{1} inside and ends in $|w| \leq m+\varepsilon$, where ε is any positive fixed number.

In fact, if every point w of $|w|=R_{1}$ possesses at least one such Jordan simple closed curve in \mathfrak{D}, we can describe any Jordan simple closed curve in \mathfrak{D} which contains the circle $|w|=R_{1}$ inside, which is incompatible with the property of the radius $R<R_{1}$. Then we have at least two points w_{1} and $w_{2}, w_{1} \neq w_{2},\left|w_{1}\right|,\left|w_{2}\right|>R,\left|w_{1}\right|,\left|w_{2}\right|>m$, such that we can not describe any Jordan simple closed curve in \mathfrak{D} which contains w_{1} or w_{2} inside. Transform w_{1}, w_{2} and ∞ in w-plane into $0,1, \infty$ in U-plane by the linear transformation

$$
U=l(w)=\frac{w-w_{1}}{w_{2}-w_{1}}
$$

The domain \mathfrak{D} and the circle $|w|=m$ will be transformed into a domain Δ and a circle T respectively. Let $W=\nu(U)$ be a modular function ${ }^{1)}$

[^0]which transform the domain $U \neq 0,1$ into $|W|<1$. Consider the function
$$
F(z)=\nu[l\{f(z)\}] .
$$

As we can not describe any Jordan simple closed curve in \mathfrak{D} which contains w_{1} or w_{2} inside, the function $F(z)$ is one-valued ${ }^{1)}$ and analytic in D.

The inside of T in U-plane will be transformed into a domain contained in the circle $|W|<\sigma, \sigma<1$. Therefore, for every point ζ of the frontier C with the exception of z_{0}, the following inequality is verified

$$
\varlimsup_{z \rightarrow \zeta}|F(z)| \leq \sigma<1
$$

$F(z)$ is bounded in D. Thus, we have from the Phragmén-Lindelöf's theorem, we have $|F(z)| \leq \sigma$ throughout in D, and hence $f(z)$ will be bounded throughout in D. The same theorem will show us that $|f(z)| \leq m$ throughout in D. Thus, our theorem 2 is proved and consequently the theorem 1 is established.

[^1]
[^0]: 1) For this notation, see p. ex. G. Julia: Lecons sur les fonctions uniformes. Paris, 1924. p. 29.
[^1]: 1) We can take the some values of the fundamental domain of $\nu^{-1}(W)$ and continuate.
