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1. Introduction. Let each point x of a complex Banach space
represent a state (x) of a physical or a mathematical system. Con-

sider a temporally homogeneous stochastic process by which the state
(z) is transferred to the state (y) after the elapse of a unit time. We
assume that this transition is realised by a linear mapping T in
y--T.z. Under their respective restrictions on T and on !D, A. Markov,
B. Hostinsky, M. Frchet, N. Kryloff-N. Bogoliouboff and other authors
investigated the asymptotic behaviour of the n-th iterate T" of T for
large n. In the present note I intend to treat the problem by the
abstract integral equations due to F. Riesz and the theory of resolvents
due to M. Nagumo. The theorem below is a genemlisation of Frchet-
Kryloff-Bogoliouboff’ theorem. The lemma 1 and the lemma 3 re-
spectively generalise the theorem of Riesz and that of Nagumo. I
express my hearty thanks to S. Kakutani who kindly collaborated with
me in the discussion of the present note. In the next papers> the
mean ergodic theorem of J. von Neumann is extended to , in a way
as to be applied to the problem of the homogeneous stochastic process.

2. The theorem. A linear mapping T of a complex Banach
space !D in !D is called a (1-inear) operator in . T is called continuous
if its norm (absolute value)[[ T[[ 1.u.b. T-z[[ is finite. A continuous

I1_<1

operator T is called completely continuous if it maps the unit sphere
]lxll < 1 of on a compact point set in .

Let T satisfy the following two conditions"

(1) there exists a completely continuous operator V such that
T- VII < 1,

(2) there exists a constant a such that T’*[[__a for n=l, 2,

Then we obtain the
Theorem. The proper values of T with modulus 1 are isolated

proper values of finite multiplicities. Let these proper values be. Then there exist completely continuous operators T, T.
T, a continuous operator S and positive co.stants , such that

1) Acta Math. 41 (1918), 71-98.
2) Jap. J. of Math. 13 (1936), 75-80.
3) M. Frchet: Quart. J. of Math. 5 (1934), 106-144. N. Kryloff and N. Bogo-

liouboff C. R. Paris, 204 (1937), 1386-1388.
4) He also obtained another proof of our theorem, by virtue of the mean ergodic

theorem in . See the following paper of Kakutani.
5) Proc. 14 (1938), 292.
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T=T,/S, T=T, TT=O(ij), TS=ST=O
(3) (i,3.= 1, 2, ..., k),

(llSll_ fl/(1-t-e) (n=l, 2, ).

Corollary 1. There exist positive constants r such that, iflii 1,

T.o(2)= T if 2=2, T(2)=0 if 2 21, 22, ...,

Corollary 2. (T/2) converges (necessarily to T.J2)) if and only if
there are no proper values of T with modulus 1 other than .

Corollary 3. We replace the condition (1) by

there exist positive integer m and a completely continuous
(5)

(operator V such that T- VII 1.

Then there exist positive constants r such that, ifill= 1,

(T/)+(T]D’+n ...+(T/)" T’oJ) _r’/n (n= 1, 2, ...),

T’(t)= (T])/(T/2)+ /(T/)’- lim {T/D’+(T/D+ +(T/D"

Remark} Put To=E-, T, where E denotes the identical map-

ping of !D. Then, by (3), T0=T0, ToT=TTo=O (i1). Hence, if
denotes the image of by T, we have the direct decomposition

!0+!+.--+. Each point of is invariant by T, as T= T.
(i_1) is of finite dimension by Riesz’s theorem since T=T and

T (i

_
1) is completely continuous. Let x e !D0, then T.x TTo. x S. x,

.., T.x=SEx. Let xe (i__1), then T.x=TT.x=T.x=,c,...,
T x -=,’x. Hence limT.x=0 uniformly for x e!D0, and T x

(x e, i

__
1) moves in !D almost periodically with respect to n.

and !D (il) may respectively be called the dissipative part and the
ergod/c part of .

3. Three lemmas for the proof of the theorem.
Lemma 1.) Let T satisfy the condition (1). Then the proper

values of T do not accumulate to the point not interior of the unit
circle in the complex plane.

Proof. Put T= V+ U, then UI!--/} 1. We have to derive a
contradiction from

(6) T.x=2.x, xe, x-O,- (i-j,) lim2=,

1) Cf. N. Kryloff and N. Bogoliouboff: Bult. Soc. Math. France, 64 (1936), 49-56.
2) If T is completely continuous this lemma reduces to the Satz 12 in Riesz, loc.

eit. p. 90- the only accumulation point of the proper values of T is the point zero.
For, in this case, AT satisfies (1) for any .
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We have T T-(T- V) +(T- V). T-(T- V) is completely
continuous with V, and (T- V)ll__, T .z=? .z. Therefore it
suffices to derive a contradiction from (6) when <: (1/4). This may
be carried out as follows.

z,, ...,z are linearly independent for any n. The proof is
obtained by induction with respect to n. Let , x2, ...,- be linearly
independent and let z be linearly dependent with z,x2,...,z-:

-I ,-I

=] a. Then we obtain , a(,-it)x=0 from T.,=
i=l i=1

-1

T.,= ,aT.x, contrary to the hypothesis of the induction.

Thus the linear space 9_ spanned by , x, ..., -1 is a proper
subspace of the linear space 9 spanned by Xl, x2, ..., . By Riesz’s
theorem there exists a sequence {y} such that
(1/2) for all e 9_. We have T(y/2)- T(y#/2#)-y- {y- T(y/2)-t-
T(y#/2#)}. y- T(y/2) e 9_ as y e 9. Hence

(7) v(ylJ- V(y;IDI! +all(yl,)-(y;lDIl> (ll2) for

V being completely continuous and Ilyll 1, lira i 2, Iti1, there

exists a partial sequence {i’} of {i} such that lim
=0. Thus, by (7), <:(1/4), I[y,l[=l, lim2,= and I11, weobtain
a contradiction.

Lemma . Let be a domain in the complez 2-plane. A family
V(2) of completely continuous operators in be regular in e. Le

denotes the set of points (in ) a each poin of which the equation

(E+V())z=0 admits non-trivial solution 0. Then for each
e- E+ V() has a unique (continuous) inverse E+K(2)" (E+ V())
(E+K()) (E+K()) (E+ V(2)) =E. K() is regular in 2e-, and
is completely continuous for each e-.

Proof. By Riesz’s theorem E+V() has a unique (continuous)
inverse E+K() for each 2 e-. By K(;t)= V()-K()V(), we see
that K(2) is completely continuous.

Let ,oe- then the series FE+ {E- (E+K(o))(E+ V())
(E+K(0)) are absolutely and uniformly convergent for sufficiently small

1-201. It is easy to see that this series are the demanded inverse
E/K().

Lemma 3J Let T satisfy the condition (1). By the lemma 1,
the proper values of T with modulus 1 are isolated proper vahtes. Let
these proper values be , 2, ..., . Then there exists a positive e such
that E+2T admits a unique (continuous) inverse E/2R for each
1--2<:11-1+2, except for =-i-, -E, ...,--;. R is regular
in l, 1-2<211<:1+2, except for pores __-1 (i=1, 2, ..., k).

Proof. As , ,., ..., are isolated proper values of T, there exists

1) If T is completely continuous this lemma reduces to the Satz 12 in blagumo,
loc. cit. p. 79" the resolvent R of T defined by (E+ AT) (E+R)--(E+R) (E+AT)
--E is meromorphic in [1" oo. For, in this case, AT satisfies (1) for any L
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a positive y such that (E-i-T}x,=O does not admit non-trivial solution
x = 0 for any 2, 1 <:: I <2 1 / y, except for 2 2i-, 2, ..., 2;.

Put T= V-t- U. By Ull <2 1, E/ U admits a unique (continu-

ous) inverse E-i-2U=E+,(-2U)’* which is regular in
n--1

We have (E-t- U)(E-t-T)=E+2 V-t-2U,V. Put V(2)=V-t-22U V.
It is regular in <2(1/) and is completely continuous with V for each,, < (1/,).

Let 2e =Min. ((1/)- 1, ). We denote by the domain 1-2

121 < 1+2, and let be the point set (-, 2, ..., -),). Then
the equation (E+ V(1))x=0 does not admit non-trivial solution x:k=0
for any e-. Assume that there exists a Xo :k 0, 2o e , which
satisfies (E+ V(o))Xo=0. Then we would have (E+oT)xo=(E+,oU)

(E+ V(o))Xo=0. This shows that oe.
Thus, by the lemma 2, E+ V(2) admits a unique (continuous) in-

verse E+K(a) for each a e-, and K(2) is regular in a e-. We
easily verify that E+2Ra=(E+K(2))(E+2Ua) is the inverse of E+2T
for each e )-.

Let the Laurent expansion of R=(K(i)-t-U-t-K()U))/ at
the isolated singular point 2 =-2 be

(8) (+-)"c,,(j)

By Cauchy’s theorem C-x(j)=-., ad2. Ua being regular at 2 =-/-1,

1 {(K(),)+2K(2)Ua)/2}d2. As K(2)iswe have C_(j)=- eompletely

eontinuus we see that C_(j) is also eompletely eontinuous.
By substituting (8) in the resolvent equation

we obtain

O) c_.(’lc,(l c,(’lc_.(’) 0 (> o, > 01,
(101 c_(’)-- c_(/, C_.()-- c_.(lc_(’l 6’_(’lc_.(),

6’_0,/.(’) c_.() (>0).

3 is mpl on its linear subslee i by C_(j). By
all the lint of 3 is inveriant by C_(j). The uni sphere in 3 is
eompaet since C_(j)is eompletdy continuous. Thus i is f ni
dimension by Ries’s theorem. By (10) C_,(j) maps 3 in 3i and
henee 6’-o/(j) is of the frm iC_(.), where D is a linear mapping

f i in 3. Thus (+)-"C_,()=-2,(l+--/Dn"r’ As
it converges fr 1.2+1 ;>0, the matrix Di must be nilnt" D?=0
for large .

Hence =- is a le of. roof of the thee. By (1) and the lemma , the
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(continuous) inverse E+2R o E+2T is regular in
except or poles 2 2x, 2, ..., 2x. By (2) we see that, or ]2 I<= 1,
Rx is given by the absolutely and uniformly convergent series

]-(-T)" -(-T) /(1-1-]). Hence R is regular in

II<1/2, except or simple poles l=-r, -l, ...,-. Let the
Laurent expansion o R at =- be

Then, by (8), (9), (10) and R0 -T we see that
k

T= T, TT=O (i :k=j), (T-,2T)T=T(T-,T)=O
i=l i-1

Put T=JT/S. Then, by the above relations, we obtain for

(- Sp

-x)- ,,,-(=,(t-i- T/l, -S)
jr1

Therefore, by (11), we see that ,-(-S) is regular in

Hence, by Cauchy’s theorem, I]S.,fl/(l +)’, [ 1. u. b. S)
1,11<_1+- Iln-X

for n--- 1, 2,
5. Smoluchousky’s equation.1 Let a family T(t) of continuous

operators in satisfy the equation of Smoluchousky: T(t/s)= T(t)T(s)
(0<:t,s<: oo). We assume that T(t) is continuous in t:
lim llT(t)-T(to)l[=O, and that there exists a positive t such that
t->to
T=T() satisfies (1) and (2).

By the theorem we have the representation (3). We put

T(0 + T T(OT ..

T;() and S() is continuous in . T is commutative with every T(0
by (4), and hence we obtain, or 0 <= , s <: oo, T-(-I- s) T,()T(s),
T()S(s) S(s)T() 0 and S(/s)

As S=S() satisfies (4) we obtain, by positive and b,
a. exp(- bt) or tx <::

By T= T, T()= TT()= T(OT and the complete continuity of
T we see, as in the proof of the lemma 3, that Tj()=M()T, where the
finite dimentional matrix M-() is continuous in and satisfies the
equation of Smoluchousky. As M(l)=the unit matrix we see that

1) An analogus result is obtained by Kakutani also, by applying the theorem to
the sequence {T(t/2n)}.
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M(O) lim M(t) the unit matrix. Hence,D if M-(t) M(O)II <= 1 for

tt0, to::>0, we have M(0=exp(Ct]to), where C--log(M(t)). Thus,
by M-(t)=the unit matrix, we see that M(0 is similar to the matrix
of the form

all real-------0 rood. 1).

Therefore the theorem is extended to the continuous stochastic
process.

1) K. Yosida- Jap. J. of Math. 13 (1936), 25.


