73. Abstract Integral Equations and the Homogeneous Stochastic Process.

By Kôsaku Yosida.
Mathematical Institute, Osaka Imperial University. (Comm. by T. Takagi, m.I.A., Oct. 12, 1938.)

§1. Introduction. Let each point x of a complex Banach space \mathfrak{B} represent a state (x) of a physical or a mathematical system. Consider a temporally homogeneous stochastic process by which the state (x) is transferred to the state (y) after the elapse of a unit time. We assume that this transition is realised by a linear mapping T in \mathfrak{B} : $y=T \cdot x$. Under their respective restrictions on T and on \mathfrak{B}, A. Markov, B. Hostinsky, M. Fréchet, N. Kryloff-N. Bogoliouboff and other authors investigated the asymptotic behaviour of the n-th iterate T^{n} of T for large n. In the present note I intend to treat the problem by the abstract integral equations due to F. Riesz ${ }^{1}$ and the theory of resolvents due to M. Nagumo. ${ }^{2}$ (he theorem below is a generalisation of Fréchet-Kryloff-Bogoliouboff's theorem. ${ }^{3)}$ The lemma 1 and the lemma 3 respectively generalise the theorem of Riesz and that of Nagumo. I express my hearty thanks to S . Kakutani who kindly collaborated with me in the discussion of the present note. ${ }^{4)}$ In the next paper ${ }^{5)}$ the mean ergodic theorem of J . von Neumann is extended to \mathfrak{B}, in a way as to be applied to the problem of the homogeneous stochastic process.
§2. The theorem. A linear mapping T of a complex Banach space \mathfrak{B} in \mathfrak{B} is called a (linear) operator in $\mathfrak{B} . \quad T$ is called continuous if its norm (absolute value) $\|T\|=l_{i x \mid \leq 1} . \mathrm{b}\|T \cdot x\|$ is finite. A continuous operator T is called completely continuous if it maps the unit sphere $\|x\| \leq 1$ of \mathfrak{B} on a compact point set in \mathfrak{B}.

Let T satisfy the following two conditions:
(1) there exists a completely continuous operator V such that $\|T-V\|<1$,
(2) there exists a constant α such that $\left\|T^{n}\right\| \leq \alpha$ for $n=1,2, \ldots$ Then we obtain the

Theorem. The proper values of T with modulus 1 are isolated proper values of finite multiplicities. Let these proper values be λ_{1}, λ_{2}, $\ldots \ldots, \lambda_{k}$. Then there exist completely continuous operators $T_{1}, T_{2} \ldots \ldots$, T_{k}, a continuous operator S and positive constants β, ε such that

[^0]5) Proc. 14 (1938), 292.
\[

\left\{$$
\begin{array}{lc}
T=\sum_{i=1}^{k} \lambda_{i} T_{i}+S, T_{i}^{2}=T_{i}, T_{i} T_{j}=0(i \neq j), & T_{i} S=S T_{i}=0 \tag{3}\\
\left\|S^{n}\right\| \leqq \beta /(1+\varepsilon)^{n} & (n=1,2, \ldots \ldots) .
\end{array}
$$\right.
\]

Corollary 1. There exist positive constants γ_{λ} such that, if $|\lambda|=1$,
(4)

$$
\left\{\begin{array}{l}
\left\|\frac{(T / \lambda)+(T / \lambda)^{2}+\cdots+(T / \lambda)^{n}}{n}-T_{\infty}(\lambda)\right\| \leq r_{\lambda} / n \quad(n=1,2, \ldots), \\
T_{\infty}(\lambda)=T_{i} \text { if } \lambda=\lambda_{i}, T_{\infty}(\lambda)=0 \text { if } \lambda \neq \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k} .
\end{array}\right.
$$

Corollary 2. $(T / \lambda)^{n}$ converges (necessarily to $\left.T_{\infty}(\lambda)\right)$ if and only if there are no proper values of T with modulus 1 other than λ.

Corollary 3. We replace the condition (1) by $\left\{\begin{array}{l}\text { there exist positive integer } m \text { and a completely continuous } \\ \text { operator } V \text { such that }\left\|T^{m}-V\right\|<1 .\end{array}\right.$

Then there exist positive constants r_{λ}^{\prime} such that, if $|\lambda|=1$,

$$
\begin{gathered}
\left\|\frac{(T / \lambda)+(T / \lambda)^{2}+\cdots+(T / \lambda)^{n}}{n}-T_{\infty}^{\prime}(\lambda)\right\| \leq r_{\lambda}^{\prime} / n \quad(n=1,2, \ldots), \\
T_{\infty}^{\prime}(\lambda)=\frac{(T / \lambda)+(T / \lambda)^{2}+\cdots+(T / \lambda)^{m-1}}{m-1} \lim _{n \rightarrow \infty} \frac{(T / \lambda)^{m}+(T / \lambda)^{2 m}+\cdots+(T / \lambda)^{n m}}{n}
\end{gathered}
$$

Remark. ${ }^{1)}$ Put $T_{0}=E-\sum_{i=1}^{k} T_{i}$, where E denotes the identical mapping of \mathfrak{B}. Then, by (3), $T_{0}^{2}=T_{0}, T_{0} T_{i}=T_{i} T_{0}=0(i \geq 1)$. Hence, if \mathfrak{B}_{j} denotes the image of \mathfrak{B} by T_{y}, we have the direct decomposition $\mathfrak{B}=\mathfrak{B}_{0}+\mathfrak{B}_{1}+\cdots+\mathfrak{B}_{k}$. Each point of \mathfrak{B}_{j} is invariant by T_{j}, as $T_{j}^{2}=T_{j}$. $\mathfrak{B}_{i}(i \geq 1)$ is of finite dimension by Riesz's theorem since $T_{i}^{2}=T_{i}$ and $T_{i}(i \geq 1)$ is completely continuous. Let $x \in \mathfrak{B}_{0}$, then $T \cdot x=T T_{0} \cdot x=S \cdot x$, $\ldots, T^{n} \cdot x=S^{n} x$. Let $x \in \mathfrak{B}_{i}(i \geq 1)$, then $T \cdot x=T T_{i} \cdot x=\lambda_{i} T_{i} \cdot x=\lambda_{i} x, \ldots$, $T^{n} \cdot x=\lambda_{i}^{n} \cdot x$. Hence $\lim _{n \rightarrow \infty} T^{n} \cdot x=0$ uniformly for $x \in \mathfrak{B}_{0}$, and $T^{n} \cdot x$ $\left(x \in \mathfrak{B}_{i}, i \geq 1\right)$ moves in \mathfrak{B}_{i} almost periodically with respect to n. \mathfrak{B}_{0} and $\mathfrak{B}_{i}(i \geq 1)$ may respectively be called the dissipative part and the ergodic part of \mathfrak{B}.
§3. Three lemmas for the proof of the theorem.
Lemma 1. ${ }^{2)}$ Let T satisfy the condition (1). Then the proper values of T do not accumulate to the point not interior of the unit circle in the complex plane.

Proof. Put $T=V+U$, then $\|U\|=\delta<1$. We have to derive a contradiction from

$$
\begin{equation*}
T \cdot x_{i}=\lambda_{i} \cdot x_{i}, x_{i} \in \mathfrak{B}, x_{i} \neq 0, \lambda_{i} \neq \lambda_{j}(i \neq j,) \lim _{i \rightarrow \infty} \lambda_{i}=\lambda,|\lambda| \geq 1 . \tag{6}
\end{equation*}
$$

[^1]We have $T^{n}=T^{n}-(T-V)^{n}+(T-V)^{n} . \quad T^{n}-(T-V)^{n}$ is completely continuous with V, and $\left\|(T-V)^{n}\right\| \leq \delta^{n}, T^{n} \cdot x_{i}=\lambda_{i}^{n} \cdot x_{i}$. Therefore it suffices to derive a contradiction from (6) when $\delta<(1 / 4)$. This may be carried out as follows.
$x_{1}, x_{2}, \ldots, x_{n}$ are linearly independent for any n. The proof is obtained by induction with respect to n. Let $x_{1}, x_{2}, \ldots, x_{n-1}$ be linearly independent and let x_{n} be linearly dependent with $x_{1}, x_{2}, \ldots, x_{n-1}$: $x_{n}=\sum_{i=1}^{n-1} \alpha_{i} x_{i}$. Then we obtain $\sum_{i=1}^{n-1} \alpha_{i}\left(\lambda_{n}-\lambda_{i}\right) x_{i}=0$ from $T \cdot x_{n}=\lambda_{n} x_{n}$, $T \cdot x_{n}=\sum_{i=1}^{n-1} \alpha_{i} T \cdot x_{i}$, contrary to the hypothesis of the induction.

Thus the linear space \Re_{n-1} spanned by $x_{1}, x_{2}, \ldots, x_{n-1}$ is a proper subspace of the linear space \mathfrak{R}_{n} spanned by $x_{1}, x_{2}, \ldots, x_{n}$. By Riesz's theorem there exists a sequence $\left\{y_{i}\right\}$ such that $y_{i} \in \Re_{i},\left\|y_{i}\right\|=1,\left\|y_{i}-x\right\|>$ (1/2) for all $x \in \Re_{i-1}$. We have $T\left(y_{i} / \lambda_{i}\right)-T\left(y_{j} / \lambda_{j}\right)=y_{i}-\left\{y_{i}-T\left(y_{i} / \lambda_{i}\right)+\right.$ $\left.T\left(y_{j} / \lambda_{j}\right)\right\} . \quad y_{i}-T\left(y_{i} / \lambda_{i}\right) \in \mathfrak{R}_{i-1}$ as $y_{i} \in \mathfrak{R}_{i} . \quad$ Hence

$$
\begin{equation*}
\left\|V\left(y_{i} / \lambda_{i}\right)-V\left(y_{j} / \lambda_{j}\right)\right\|+\delta\left\|\left(y_{i} / \lambda_{i}\right)-\left(y_{j} / \lambda_{j}\right)\right\|>(1 / 2) \text { for } j<i . \tag{7}
\end{equation*}
$$

V being completely continuous and $\left\|y_{i}\right\|=1, \lim _{i \rightarrow \infty} \lambda_{i}=\lambda,|\lambda| \geq 1$, there exists a partial sequence $\left\{i^{\prime}\right\}$ of $\{i\}$ such that $\lim \left\|V\left(y_{i^{\prime}} / \lambda_{i^{\prime}}\right)-V\left(y_{j^{\prime}} / \lambda_{i^{\prime}}\right)\right\|$ $=0$. Thus, by (7), $\delta<(1 / 4),\left\|y_{i^{\prime}}\right\|=1, \lim \lambda_{i^{\prime}}=\lambda$ and $|\lambda| \geq 1$, we obtain a contradiction.

Lemma 2. Let \mathfrak{D} be a domain in the complex λ-plane. A family $V(\lambda)$ of completely continuous operators in \mathfrak{B} be regular in $\lambda \in \mathfrak{D}$. Let \mathfrak{J} denotes the set of points (in \mathfrak{D}) at each point of which the equation $(E+V(\lambda)) x_{\lambda}=0$ admits non-trivial solution $x_{\lambda} \neq 0$. Then for each $\lambda \in \mathfrak{D}-\Im E+V(\lambda)$ has a unique (continuous) inverse $E+K(\lambda):(E+V(\lambda))$ $(E+K(\lambda))=(E+K(\lambda))(E+V(\lambda))=E . K(\lambda)$ is regular in $\lambda \in \mathfrak{D}-\Im$ and is completely continuous for each $\lambda \in \mathfrak{D}-\mathfrak{F}$.

Proof. By Riesz's theorem $E+V(\lambda)$ has a unique (continuous) inverse $E+K(\lambda)$ for each $\lambda \in \mathfrak{D}-\Im$. By $K(\lambda)=-V(\lambda)-K(\lambda) V(\lambda)$, we see that $K(\lambda)$ is completely continuous.

Let $\lambda_{0} \in \mathfrak{D}-\Im$, then the series $\left[E+\sum_{n=1}^{\infty}\left\{E-\left(E+K\left(\lambda_{0}\right)\right)(E+V(\lambda))\right\}^{n}\right]$. $\left(E+K\left(\lambda_{0}\right)\right)$ are absolutely and uniformly convergent for sufficiently small $\left|\lambda-\lambda_{0}\right|$. It is easy to see that this series are the demanded inverse $E+K(\lambda)$.

Lemma 3. ${ }^{1)}$ Let T satisfy the condition (1). By the lemma 1, the proper values of T with modulus 1 are isolated proper values. Let these proper values be $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. Then there exists a positive ε such that $E+\lambda T$ admits a unique (continuous) inverse $E+\lambda R_{\lambda}$ for each λ, $1-2 \varepsilon<|\lambda|<1+2 \varepsilon$, except for $\lambda=-\lambda_{1}^{-1},-\lambda_{2}^{-1}, \ldots,-\lambda_{k}^{-1} . \quad R_{\lambda}$ is regular in $\lambda, 1-2 \varepsilon<|\lambda|<1+2 \varepsilon$, except for poles $-\lambda_{i}^{-1}(i=1,2, \ldots, k)$.

Proof. As $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are isolated proper values of T, there exists

[^2]a positive η such that $(E+\lambda T) x_{\lambda}=0$ does not admit non-trivial solution $x_{\lambda} \neq 0$ for any $\lambda, 1-\eta<|\lambda|<1+\eta$, except for $\lambda=-\lambda_{1}^{-1},-\lambda_{2}^{-1}, \ldots,-\lambda_{k}^{-1}$.

Put $T=V+U$. By $\|U\|=\delta<1, E+\lambda U$ admits a unique (continuous) inverse $E+\lambda U_{\lambda}=E+\sum_{n=1}^{\infty}(-\lambda U)^{n}$ which is regular in $|\lambda|<(1 / \delta)$.

We have $\left(E+\lambda U_{\lambda}\right)(E+\lambda T)=E+\lambda V+\lambda^{2} U_{\lambda} V$. Put $V(\lambda)=\lambda V+\lambda^{2} U_{\lambda} V$. It is regular in $\lambda<(1 / \delta)$ and is completely continuous with V for each $\lambda, \lambda<(1 / \delta)$.

Let $2 \varepsilon=\operatorname{Min} .((1 / \delta)-1, \eta)$. We denote by \mathfrak{D} the domain $1-2 \varepsilon<$ $|\lambda|<1+2 \varepsilon$, and let \mathfrak{J} be the point set $\left(-\lambda_{1}^{-1},-\lambda_{2}^{-1}, \ldots,-\lambda_{k}^{-1}\right)$. Then the equation $(E+V(\lambda)) x_{\lambda}=0$ does not admit non-trivial solution $x_{\lambda} \neq 0$ for any $\lambda \in \mathfrak{D}-\Im$. Assume that there exists a $x_{\lambda_{0}} \neq 0, \lambda_{0} \in \mathfrak{D}$, which satisfies $\left(E+V\left(\lambda_{0}\right)\right) x_{\lambda_{0}}=0$. Then we would have $\left(E+\lambda_{0} T\right) x_{\lambda_{0}}=\left(E+\lambda_{0} U\right)$ $\left(E+V\left(\lambda_{0}\right)\right) x_{\lambda_{0}}=0$. This shows that $\lambda_{0} \in \mathfrak{F}$.

Thus, by the lemma $2, E+V(\lambda)$ admits a unique (continuous) inverse $E+K(\lambda)$ for each $\lambda \in \mathfrak{D}-\mathfrak{F}$, and $K(\lambda)$ is regular in $\lambda \in \mathfrak{D}-\mathfrak{F}$. We easily verify that $E+\lambda R_{\lambda}=(E+K(\lambda))\left(E+\lambda U_{\lambda}\right)$ is the inverse of $E+\lambda T$ for each $\lambda \in \mathfrak{D}-\mathfrak{F}$.

Let the Laurent expansion of $\left.R_{\lambda}=\left(K(\lambda)+\lambda U_{\lambda}+\lambda K(\lambda) U_{\lambda}\right)\right) / \lambda$ at the isolated singular point $\lambda=-\lambda_{j}^{-1}$ be

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}\left(\lambda+\lambda_{j}^{-1}\right)^{n} C_{n}(j) . \tag{8}
\end{equation*}
$$

By Cauchy's theorem $C_{-1}(j)=\frac{1}{2 \pi i} \int R_{\lambda} d \lambda . \quad U_{\lambda}$ being regular at $\lambda=-\lambda_{j}^{-1}$, we have $C_{-1}(j)=\frac{1}{2 \pi i} \int\left\{\left(K(\lambda)+\lambda K(\lambda) U_{\lambda}\right) / \lambda\right\} d \lambda$. As $K(\lambda)$ is completely continuous we see that $C_{-1}(j)$ is also completely continuous.

By substituting (8) in the resolvent equation $R_{\lambda}-R_{\mu}=(\lambda-\mu) R_{\lambda} R_{\mu}$ we obtain

$$
\begin{align*}
& C_{-n}(j) C_{m}(j)=C_{m}(j) C_{-n}(j)=0 \quad(n>0, m \geq 0), \tag{9}\\
& C_{-1}(j)^{2}=C_{-1}(j), C_{-n}(j)=C_{-n}(j) C_{-1}(j)=C_{-1}(j) C_{-n}(j), \\
& \\
& C_{-(n+1)}(j)=C_{-2}^{n}(j) \quad(n>0) .
\end{align*}
$$

\mathfrak{B} is mapped on its linear subspace \mathfrak{B}_{j} by $C_{-1}(j)$. By $C_{-1}^{2}(j)=C_{-1}(j)$ all the points of \mathfrak{B}_{j} is invariant by $C_{-1}(j)$. The unit sphere in \mathfrak{B}_{j} is compact since $C_{-1}(j)$ is completely continuous. Thus \mathfrak{F}_{j} is of finite dimension by Riesz's theorem. By (10) $C_{-n}(j)$ maps \mathfrak{B}_{j} in \mathfrak{B}_{j} and hence $C_{-(n+1)}(j)$ is of the form $D_{j}^{n} C_{-1}(j)$, where D_{j} is a linear mapping of \mathfrak{F}_{j} in \mathfrak{B}_{j}. Thus $\sum_{n=1}^{\infty}\left(\lambda+\lambda_{j}^{-1}\right)^{-n} C_{-n}(j)=\sum_{n=0}^{\infty}\left(\lambda+\lambda_{j}^{-1}\right)^{-(n+1)} D_{j}^{n} C_{-1}(j)$. As it converges for $\left|\lambda+\lambda_{j}^{-1}\right|>0$, the matrix D_{j} must be nilpotent: $D_{i}^{n}=0$ for large n.

Hence $\lambda=-\lambda_{j}^{-1}$ is a pole of R_{λ}.
§4. The proof of the theorem. By (1) and the lemma 3, the
(continuous) inverse $E+\lambda R_{\lambda}$ of $E+\lambda T$ is regular in $1-2 \varepsilon<|\lambda|<1+2 \varepsilon$ except for poles $\lambda=-\lambda_{1}^{-1},-\lambda_{2}^{-1}, \ldots, \lambda_{k}^{-1}$. By (2) we see that, for $|\lambda|<1$, R_{λ} is given by the absolutely and uniformly convergent series $\sum_{n=1}^{\infty} \lambda^{n-1}(-T)^{n}:\left\|\sum_{n=1}^{\infty} \lambda^{n-1}(-T)^{n}\right\| \leq \alpha /(1-|\lambda|)$. Hence R_{λ} is regular in $|\lambda|<1+2 \varepsilon$, except for simple poles $\lambda=-\lambda_{1}^{-1},-\lambda_{2}^{-1}, \ldots,-\lambda_{k}^{-1}$. Let the Laurent expansion of R_{λ} at $\lambda=-\lambda_{j}^{-1}$ be

$$
\begin{equation*}
\left(\lambda+\lambda_{j}^{-1}\right)^{-1} T_{j}+\sum_{n=0}^{\infty}\left(\lambda+\lambda_{j}^{-1}\right)^{n} T_{j, n} \tag{11}
\end{equation*}
$$

Then, by (8), (9), (10) and $R_{0}=-T$ we see that

$$
\begin{array}{r}
T_{j}^{2}=T_{j}, T_{i} T_{j}=0 \quad(i \neq j), \quad\left(T-\sum_{i=1}^{k} \lambda_{i} T_{i}\right) T_{j}=T_{j}\left(T-\sum_{i=1}^{k} \lambda_{i} T_{i}\right)=0 \\
(i, j=1,2, \ldots, k)
\end{array}
$$

Put $T=\sum_{i=1}^{k} \lambda_{i} T_{i}+S$. Then, by the above relations, we obtain for $|\lambda|<1$

$$
\begin{aligned}
R_{\lambda}=\sum_{n=1}^{\infty} \lambda^{n-1}(-T)^{n} & =\sum_{j=1}^{k} \sum_{n=1}^{\infty}\left(-\lambda_{j}\right)^{n} \lambda^{n-1} T_{j}+\sum_{n-1}^{\infty} \lambda^{n-1}(-S)^{n} \\
& =\sum_{j=1}^{k}\left(\lambda+\lambda_{j}^{-1}\right)^{-1} T_{j}+\sum_{n=1}^{\infty} \lambda^{n-1}(-S)^{n}
\end{aligned}
$$

Therefore, by (11), we see that $\sum_{n=1}^{\infty} \lambda^{n-1}(-S)^{n}$ is regular in $|\lambda|<1+2 \varepsilon$. Hence, by Cauchy's theorem, $\left\|S^{n}\right\| \leq \beta /(1+\varepsilon)^{n}, \beta=\underset{|\lambda| \leq 1+\frac{3}{2} \varepsilon}{\text { l. } \varepsilon}\left\|\sum_{n=1}^{\infty}(-\lambda S)^{n}\right\|$ for $n=1,2, \ldots$.
§5. Smoluchousky's equation. ${ }^{1)}$ Let a family $T(t)$ of continuous operators in \mathfrak{B} satisfy the equation of Smoluchousky : $T(t+s)=T(t) T(s)$ $(0<t, s<\infty)$. We assume that $T(t)$ is continuous in t : $\lim _{t \rightarrow t_{0}}\left\|T(t)-T\left(t_{0}\right)\right\|=0$, and that there exists a positive t_{1} such that $T=T\left(t_{1}\right)$ satisfies (1) and (2).

By the theorem we have the representation (3). We put

$$
T(t)=\sum_{j=1}^{k} T_{j}(t)+S(t), T_{j}(t)=T_{j} T(t) T_{j}
$$

$T_{j}(t)$ and $S(t)$ is continuous in $t . \quad T_{j}$ is commutative with every $T(t)$ by (4), and hence we obtain, for $0<t, s<\infty, T_{j}(t+s)=T_{j}(t) T_{j}(s)$, $T_{j}(t) S(s)=S(s) T_{j}(t)=0$ and $S(t+s)=S(t) S(s)$.

As $S=S\left(t_{1}\right)$ satisfies (4) we obtain, by positive a and $b,\|S(t)\| \leq$ $a \cdot \exp (-b t)$ for $t_{1} \leq t<\infty$.

By $T_{j}^{2}=T_{j}, T_{j}(t)=T_{j} T_{j}(t)=T_{j}(t) T_{j}$ and the complete continuity of T_{j} we see, as in the proof of the lemma 3 , that $T_{j}(t)=M_{j}(t) T_{j}$, where the finite dimentional matrix $M_{j}(t)$ is continuous in t and satisfies the equation of Smoluchousky. As $M_{j}\left(t_{1}\right)=$ the unit matrix we see that

[^3]No. 8.] Abstract Integral Equations and the Homogeneous Stochastic Process. 291 $M_{j}(0)=\lim _{t \rightarrow 0} M_{j}(t)=$ the unit matrix. Hence, ${ }^{1)}$ if $\left\|M_{j}(t)-M_{j}(0)\right\|<1$ for $t \leq t_{0}, t_{0}>0$, we have $M_{j}(t)=\exp \left(C_{j} t / t_{0}\right)$, where $C_{j}=\log \left(M_{j}\left(t_{0}\right)\right)$. Thus, by $M_{j}\left(t_{1}\right)=$ the unit matrix, we see that $M_{j}(t)$ is similar to the matrix of the form

$$
\left(\begin{array}{cc}
\exp \left(2 \pi i \alpha_{j!} t / t_{0}\right) & \cdots \cdots 0 \\
\vdots & \ddots
\end{array} \vdots \vdots .\right.
$$

Therefore the theorem is extended to the continuous stochastic process.

1) K. Yosida: Jap. J. of Math. 13 (1936), 25.

[^0]: 1) Acta Math. 41 (1918), 71-98.
 2) Jap. J. of Math. 13 (1936), 75-80.
 3) M. Fréchet: Quart. J. of Math. 5 (1934), 106-144. N. Kryloff and N. Bogoliouboff : C. R. Paris, 204 (1937), 1386-1388.
 4) He also obtained another proof of our theorem, by virtue of the mean ergodic theorem in \mathfrak{B}. See the following paper of Kakutani.
[^1]: 1) Cf. N. Kryloff and N. Bogoliouboff : Bult. Soc. Math. France, 64 (1936), 49-56.
 2) If T is completely continuous this lemma reduces to the Satz 12 in Riesz, loc. cit. p. 90: the only accumulation point of the proper values of T is the point zero. For, in this case, λT satisfies (1) for any λ.
[^2]: 1) If T is completely continuous this lemma reduces to the Satz 12 in Nagumo, loc. cit. p. 79 : the resolvent R_{λ} of T defined by $(E+\lambda T)\left(E+\lambda R_{\lambda}\right)=\left(E+\lambda R_{\lambda}\right)(E+\lambda T)$ $=E$ is meromorphic in $|\lambda|<\infty$. For, in this case, λT satisfies (1) for any λ.
[^3]: 1) An analogus result is obtained by Kakutani also, by applying the theorem to the sequence $\left\{T\left(t / 2^{n}\right)\right\}$.
