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84. Application of Mean Ergodic Theorem
to the Problems of Markoff’s Process.

By Koésaku YosmA and Shizuo KAKUTANI
Mathematical Institute, Osaka Imperial University.
(Comm. by T. TAKAGI, M.LA., Nov. 12, 1938.)

§1. Two supplements to the Mean Ergodic Theorem.

Mean FErgodic Theorem. Let B be a (real or complex) Banach
space, and denote by T a linear operator which maps B in itself. If
(1) there exists a constant C such that | T*| < C for n=1,2,...,

and

@ {for any xeB the sequence x,.=%(T+T2+---+T”)x (n=1,

2, ...) 1s weakly compact in B,
then
there exists a linear operator Ty, which maps B in itself, such

8) { that h_)rg% (T+T%+--- 4+ T™x= T strongly for any x B, and

TT=N\T=T%=T..

T; is a projection operator which maps B on the proper space B,
of T belonging to the proper value 1. Because of (1), (2) is surely
satisfied if T is weakly completely continuous, viz., if T maps the unit
sphere 2] <1 of B on a point set weakly compact in B. These re-
sults were obtained in our previous notes.” We now prove the

Theorem 1. (2) and hence (8) hold good if T satisfies (1) and if

there exist an integer k and a weakly completely continuous

() { linear operator V, which maps B in itself, such that
T*—V|<1.

Proof ® It is sufficient to prove the case k=1. Put |T—V|=

a<<1l and ac,.,,,=;1;(T+T2+---+T”)x (n,p=1,2,...). We have TP=

Vo+D,, where V,=T?—(T—V)? is weakly completely continuous with
Vi=V and |D,1<a”. Hence 2,=%n p+T"%n np=2%n o+ ViTn np+
Dyxn n—p Since | @n,n—pl = C-lzl for n=1,2, ..., there exists (for each
p) a subsequence {n’} of {n} such that {V, 2., ._,} converges weakly
to a point y,eB. Consequently we have (since 1}1_)!{,1° | f @, ) |=0)

(4) ﬁlf (xn’) —f (yp) l ._S_’},iinwlf (xn’. p) |
+}£lw|f(Dpxn’.n'—p) [ <a-Ifl-C-lxl

for any linear functional f on B.

1) K. Yosida: Mean Ergodic Theorem in Banach spaces, Proc. 14 (1938), 292.
S. Kakutani: Iteration of linear operations in complex Banach spaces, ibd., 295.
2) Cf. the arguments given by one of us. See the paper of S. Kakutani cited
in ().
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Applying the diagonal method, we may assume that (4) holds for
any linear functional f on B and for p=1,2,... (y, may depend
on p). Consider the sequence {y,} (»=1,2,...). From (4) we have
|f ) —F W) | < (@®+a?) I fI-C-lz|, and, since f is an arbitrary funec-
tional on B, | y,— ¥, | £ («®+a%)-C-| x| for any p and ¢, which shows
that {y,} is a fundamental sequence in B. Put y=};Lr2 Yp. Then it

is easy to see that we have hgnw f()=f(y) for any linear functional

f on B. Hence the sequence {x,} converges weakly to a point
yeB.

Next we shall prove a theorem which constitutes a generalisation
of a theorem due to S. Mazur.”

Theorem 2. Let T satisfy (1) and (2). Consider the proper value
equation

%) Tr=zx,
and its conjugate equation?
(6) TX=X.

Then, if p and q denote the numbers of the linearly independent solu-
tions of (5) and (6) respectively, we must have p=q.

Proof: Put B,=Ty8. Then p=dimension of B,. Any linear
functional X(x) on B, defines a linear functional X'(x) on B: X'(x)=
X(Tw). By (3) we have, for any ze3B, X'(Tx)—X'(x)=X(T\Tx)—
X(Tw)=X(Tw— Tyx)=0. Hence the linear functional X’ satisfies (6),
from which follows ¢ = p.

Conversely, let X be a linear functional on B which satisfies (6).

Then we have, for any xe %, X(x)=X(Tx)=X(% (T+ T2+-~+T”)x)

and hence X(x)=X(Tyx) by (38). Thus X is, essentially, a linear func-
tional on B,=TyB, and hence g < p.

§ 2. Applications to the problem of Markoff’s process.

Consider a Markoff’s process by which each point = of the closed
interval 2=[0, 1] is transferred to a point y € 2 after the elapse of a
unit time. Denote by P(x, E) its transition probability ; that is, P(x, E)
is a probability that a point z comes into a Borel set £ of 2 after
the elapse of a unit time. We have 0 < P(x, E) <1 and P(x, 2)=1.
Assume that P(x, E) is measurable in « if £ is fixed, and that, for
any fixed z, P(x, E) is a totally additive set function defined for all
the Borel sets of £.

§2-1. Condition of J. L. Doob®

1) S. Mazur: Uber die Nullstellen linearer Operatoren, Studia Math. 2 (1930),
11-20. The assumption in Theorem 2 is much weaker than that of Mazur’s. He as-
sumed that B is locally weakly compact.

2) As to the notion of conjugate operators see the paper of S. Mazur cited in (1).

3) J.L. Doob: Stochastic processes with an integral valued parameter, Trans.
Amer. Math. Soc. 44 (1938), 87-150.
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There 18 a measwrable function p(x,y) defined for 0 <2,y <1
such that P(x, E) =S o(x, y)dy for any xe 2 and for any Borel

i
(7) | set E of 2; and moreover, p(x,y) satisfies the uniform inte-
grability condition : for any decreasing sequence {E,} of mea-

surable sets with m(E,) — 0, we have jp(x, ¥)dy — 0 uni-

\ formly in . En
It will be easily seen that this condition is equivalent to the following one:
®) { for any positive number ¢>0 there exists a positive number
8(e) > 0 such that m(E) << d(e) tmplies P(x, E) <<e for any x € L.
Theorem 8. Under the condition of Doob, the integral operator

f—>Tf=g: g(y)=ﬂf(x)p(w, y)dx

s a linear operator which maps the space (L) in itself. This T 13 of
norm 1 and s weakly completely continuous.

1
Proof: We have, by Fubini-Tonelli’s theorem, IIgIIL=joly(y)]dy

= m: | @)z, ) | dwdy=j: | f@) I(j: o, ) dy) dw=j: | f@) | dz=1 £ Iz.
Hence | Tl <1? By taking f(x)=1 we see that | Tl.=1.

As the conjugate space of (L) is the space (M),® any linear func-
tional % defined on the image T(L) of (L) is given by

g k) dy= [ ([ ) pte, 9 deo ) ) dy
0 o\Jo

= [ 1@ (ﬂ Ple, k@) dy )i, Kw) e ().

1
The subset (M)’ of (M) of all the functions of the form : So o(x, ) k(y) dy,

k(y)e(M), |kl <1, is separable in the topology of (M). This may
be proved as follows:

Let S be the unit sphere | ks <1 of (M). Since S< (M) < (L)
and since (L) is separable, there exists a countable subset {k.(y)} of S
which is dense in S in the topology of (L); that is, for any k(y) e (M)
with || kllx <1, there exists a subsequence {k,(y)} of {k.(y)} such that

1
lim | k—Fk, = lim S | k(y) —kn(y) | dy=0. Consequently, there exists
n/-»0 n’/>0 JO

a further subsequence {k..(y)} of {k..(y)}, a decreasing sequence {E, .}
of measurable sets and a sequence {c,~} of positive numbers such that

l,i’glw 'm(E,,») =( N !ilnw enr=0 and I k(y) '—k,.//(y) | g Eprr for any y € Eﬂ,//.

1) (L) is the linear space of all the measurable functions which are absolutely
1
integrable in [0,1]. For any f(z)e (L), we define its norm by Iflz= So Lf (@) de.

2) ITIL is a norm of T as an operator in (L). Analogous notations will be used
for other Banach spaces.
3) (M) is the linear space of all the bounded measurable functions defined in
[0,1} For any k(x) e (M), we define its norm by llk|m=eosss.. xgaix. | k() |
E Y



336 K. YosmpA and S. KAKUTANIL [Vol. 14,

Hence | [, ole, 0)htv) dy— [, e, ) b )| < |, 0) ) — o) g

gj' + j§ 2j p(z, y)dy+e,» — 0 uniformly in x. This proves the
En 9Q°Eg, E,.
separability of (M)’ in the topology of (M).
Since the space (L) is weakly complete, we see by the diagonal
process that T is weakly completely continuous as an operator in ().
Theorem 4. Under the condition of Doob, there exists a measurable
Junction px,y) defined for 0 <,y <1 such that for any flz)e (L)
we have

'1‘11_)2 J»I J~: () (p(x, ) +p®(x, y")z+ S y))dx _ S: () polee, y)dax l dy=0

0

(P™(z, y)= s:p"‘"’(x, vz, ¥)dz, n=2,3, ...; Pz, ¥)=p(z,9)) ,
and
1 1 1
9 so (2, 2) P2, y) dz = fopw(x, 2)p(z, y)dz= L Do, 2)Docl2, Y)d2 = P2, ),

(10) P, ) =0, s: P, y)dy=1.

Theorem 5.V Under the condition of Doob, the proper value 1 of
modulus 1 of T is finite in number and satisfies the binomial equation :
AN=1, where N is a fixed positive integer. .

Proof : 'The conjugate equation of f(y)=lLf(x) oz, v) d, f@)e(L),
is given by

1
an 9@)=1 P, Do)y, 9w)e D).

Hence, by Theorem 2, it is sufficient to show that if (11) admits a
solution g(x), |l gllxr=1, we must have A*=1, where » is an integer not
greater than some constant determined only by the function p(x, ¥).
This may be done as follows:

For any ¢ with 0 <<é<<1 we have

|9@)| < o, -0+ [p@,

lg(w) |S1-6 lgw) 1 >1-8
1
=j (2, ¥) (l—B)dy+b‘sp(x, Y dy=1 —3+8§p(w, ydy.
0 lgw) |>1-8 g | >1-8

Since [ gllx=1, there exists an x, with | g(x) | >1-—%; and for this x,

we have 1> \p(w, y)dyg%. Therefore, by (8), there exists a con-
logw1>1-8
stant y >0 determined from the function p(x,y) only, such that

1) This is a generalisation of a theorem of M. Fréchet. Fréchet assumed that
p™)(x,y) is uniformly bounded. See the paper of Fréchet: Sur I'allure asymptotique
des densités itétées dans le probléme des probabilités “en chaine,” Bull. de la Soc.
math. de France, 62 (1934), 68-83.
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m(E[I 9) | >1—8]) >y for any 6 >0 and for any solution g(y) of

(11) with | gllx=1.
The rest of the proof may be carried out as in the paper of
Fréchet’s.
Theorem 6. Under the condition of Doob, the proper value 1 of T
18 of finite multiplicity.
Proof: TFirst we notice that there is a constant y >0 such that

sp(x, 9¥)dy=1 implies m(E) = r for any x and for any measurable set
E
Ecq. . .
Let now f(y)=Jof(ac) p(x,y)dx. Then |fy)| < Llf(av) | p(, y) d, and
hence by integrating with respect to y and applying Fubini-Tonelli’s
1
theorem, we see that | f(y) |= sol Sf(@) | p(x,y)dx almost everywhere. There-

fore, following the same arguments as were given by N. Kryloff and

N. Bogoliouboff,” we see that, if the multiplicity of the proper value 1

is greater than > l, there exists a system of n(> —1T~) real non-nega-
7

tive measurable functions satisfying
1
| mway=1, ) -p@=0 for ix3,
1
and pi(y)=jo pix) oz, y)dx almost everywhere.

Let E; be the set of vy at which p;(y) > 0, then E; are mutually disjoint.
We have 1= () dy=([pi@)ot6, ) o)y = jp.(x)(jp(x, y)dy)da by
E,

T ’b t

Fubini-Tonelli’s theorem. Hence jp(x, ydy=1 almost everywhere in E;,

and thus m(E;) =r for i=1,2,. ,n, which is a contradiction since
n>—71;. Consequently the multiplicity of the proper value 1 is not

greater than 1

T
§2-2. Condition of W. Doeblin?
(12) { There exist two positive numbers b, 7> 0 such that m(E) <<% im-
plies P(x, E) <<1—0b for any x and for any measurable set E < L.
Clearly the condition of Doeblin is much more general than that of
Doob.
Theorem ?. Under the condition of Doeblin, the integral operator

o= Tp=g: WE)=| plde.) Ple, )

1) N. Kryloff and N. Bogolioiboff: Sur les propriétés ergodiques de Vequation
de Smoluchovski, Bull. de la Soc. math. de France, 64 (1936), 49-56.

2) W. Doeblin: Sur les propriétés asymptotiques de mouvements régis par cer-
tains types de chaines simples, Bull. math. de la Soc. Roumaine des Sciences, 39 (1937),
(2), 3-61.
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s a linear operator which maps the space (MY in itself. This T is of
norm 1 and there exists a weakly completely continuous linear operator
V, which maps (M) in itself, such that | T— Vg <<l1.

The same theorem may be stated for the space (BV).? For this
purpose, denote by I(y,) the closed interval 0 <y < y, and consider the

function F(zx, y)EP(a:, I(y)). F(x,y) is a measurable function defined

for 0<2,y=<1, and is monotone in y if x is fixed.
Theorem 7’. Under the condition of Doeblin, the integral operator

o= To=g: )=, od) P, 0)

18 o linear operator which maps the space (BV) in itself. This T is
of norm 1 and there exists a weakly completely continuous linear oper-
ator V, which maps (BV) in itself, such that | T—Vigy <1.

Proof : Since F(x,y) is monotone in y if z is fixed, p(x, 'y)=—?;§l
exists almost everywhere (for each x). p(x, ) is measurablein 0 <1,y <1.

Put oz, y)=p(z, y) if p(z, y)é% and q(x, y)=0 if p(x, y)>%. Then

Gz, y)=§:q(x, t)dt and H(x, y)=F(x,y)— G(x,y) are also measurable in

0<2,y<1, and monotone in ¥ if z is fixed. Now, consider the linear
operators V and W which correspond to G(x,%) and H(x, y) respectively.
Clearly T=V+ W. We shall show that V is weakly completely con-
tinuous as an operator in (BV) and that [Wipyr <1-b0<<1.

In order to prove that V is weakly completely continuous, let
{¢.(x)} be a sequence of functions of bounded variation with || ¢, lzy <1,
n=1,2,.... We have to choose a subsequence {¢,.(x)} of {¢.(x)} and a
function ¢y(x) € (BV) such that Vi, converges weakly to ¢(x) ; that is,
J(pn) converges to f(g,) for any linear functional f on (BV). It is disap-
pointing that the general form of linear functionals on (BV) is not yet
known, but we can evade this difficulty. Since Vy is absolutely continuous
for any ¢(x) e (BV), and since the subspace (4) of (BV) of all the abso-
lutely continuous functions of (BV) is isometric to (L), f may be consider-
ed as a functional on (L); and consequently, by a well-known result, f is
represented by a function k(x) e (M). Moreover, since Vo is absolutely

continuous with uniformly bounded density (g %) for any ¢(x) e (BV)

with ll¢lzr <1, the range of V corresponding to a sphere [ ¢lzy <1 of
(BYV) is even isometric to a uniformly bounded (in the topology of (M))

part of (M), which is a linear subspace of (L).
Thus our problem is transformed into the following one: Given

1) (M) is the linear space of all the totally additive set functions defined for all
the Borel sets of 2=[0,1]. For any ¢(F)e (M), we define its norm by | ¢ lgp=total
variation of ¢(E)=Lu. b. ¢o(E)—g.1. b. ¢(E).

2) (BYV) is the linear space of all the functions of bounded variation defined in
0<z <1 For any ¢(r)e(BV), we define its norm by l¢lsy=]| ¢(0) | +total variation
of o) in 02 < 1.
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a sequence {g,(x)} of uniformly bounded measurable functions,
9.(x) € (M), we have to choose a subsequence {g,-(x)} of {g.(x)} and a

1 1
function go(x) € (L),” such that we have ,};an &g,,,(m) k(a:)dx=sogo(w) k(x)dex
for any function k(x) € (M).

This problem may be solved as follows: Since (M) < (L) and
since (L) is separable, there is a countable subset {k.(x)} of (M)
which is dense in (M) in the topology of (L). Applying the diagonal
method, we can choose a subsequence {g,(x)} of {g.(x)} such that

tim [/ g@)knle)do exists for m=1,2,... Since {gu(e)} is uniformly

1
bounded, l}in@ L gn(@)k(x)dx exists for any k(x)e (M). The existence

of a limiting function gi(x) € (L) is now a direct consequence of the
facts that (M) < (L) and that (L) is weakly complete.

In order to prove that Wz, <1—b<<1, it is sufficient to show
that H(x,1) < 1—b for any 2. This may be easily seen from the con-
dition of Doeblin, if we observe that, for any x, the set of y, where
H(x,y) actually increases, is of measure <<7 by the construction of
H(z,) (and q(x, v)).

Remark. Theorems 4 and 6 are also true for the case when the
condition of Doeblin is satisfied. This may be easily seen as in the
preceding,

1) In general, it is impossible to take g,(x) in (M).



