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64. Note on Hni-serial and Generalized
Hni-serial Rings.

By Tadasi NAKAYAMA.
Mathematical Institute, Osaka Imperial University.

(Comm. by T. TAKAGI, M.I.A., July 12, 1940.)

The purpose of this short note is to make some supplementary re-
marks on my papers "On Frobeniusean algebras" ID and II.2 The
remarks are about uni-serial and generalized uni-serial rings as well
as about principal two-sided ideals.

Let A be a ring satisfying the minimum and the maximum condi-
tion for left and right ideals2 As an application of our study of
Frobeniusean rings, we showed (F. I, Theorem 10; F. II, Theorem 16)"

Theorem 1. If every two-sided ideal in A is expressible as
Ac=cA (c e A) then every residue class ring of A, including A itself,

is Frobeniusean,e and conversely.
On the other hand, K. Asano proved in his paper "Verallge-

meinerte Abelsche Gruppe mit hyperkomplexem Operatorenring und
ihre Anwendungen" :

Theorem . If every two-sided ideal in A is expressible as =Ac=dA (c, d eA) then A is uni-serial; and conversely.
Notwithstanding their apparent differences these two theorems ex-

press, as the writer realized later, one and the same fact2 Indeed we
have, first, the following lemma, which is perhaps of some interest for
itself"

Lemma 1. Let A possess a unit element. If a two-sided ideal
of A is expressible as 5=Ac=dA, then 5=cA=Ad too.

Proof. Denote the composition length of a left A-module m by
[m]. From the mapping a--.ac we see readily that 5=Ac is iso-
morphic to A/l(c)=A/l(cA) whence []=[A/l(cA)]. But cA and

I)
2)

plexem
4)
5)
6)
7)
8)

Ann. Math. 40 (1939)- referred to as F. I.
Forthcoming in Ann. Math.- referred to as F. II.
Einreihig. See G. KSthe, Verallgemeinerte Abelsche Gruppe mit hyperkom-
Operatorring, Math. Zeitschr. 39 (1934). Cf. also F. I, {} 7.
F. II, 9. Cf. also F. I, {} 2.
A may have an operator domain of the type described in F. II, {} 4.
F. II, {}4. See also F. I, {}2.
Japanese Journ. Math. 15 (1939).
Not only that, every left or right ideal of a uni-serial ring is principal.
As for the connection between uni-serial rings and principal ideals cf. also the

writer’s note, A note On the elementary divisor theory in non-commutative domains,
Bull. Americau Math. Soc. 44 (1938), and K. Asano, Nicht-kommutative Hauptideal-
ringe, Act. sci. ind. (1938).

9) Incidentally, the remark adjoining the definition of generalized uni-serial rings
(F. II, {} 9) was rather redundant; See Lemma 1 below. But our Theorem 17 there (as
well as F. I, Theorem 11) retains, of course, its original significance, since there are cer-
tainly generalized uni-serial rings which are not uni-serial. (For that Theorem 17 cf.
the second half of the present note.) For instance, an algebra consisting of all matrices
of a given degree 2 such that all the coefficients above the diagonal vanish is such.

10) We denote by/(S), S A, the set of left annihilators of S in A.
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(A) (). Hence

0n he oher hnd, AA/(A)=Afl() nd A, Therefore

On combining these two inequalities, we deduce []=[Ad] whence
=Ad.

Similarly -cA, and the lemma is proved.
Furthermore,
Lemma . If every rescue class ring of A is Frobeniusean then

A is uni-serial, and conversely.
Proof. 1) Let A satisfy our condition. On considering residue

class rings with respect to powers of the radical N, we find readily
that A is a generalized uni-serial ring.D Further, on retaining the
notations in F. II (or in F. I), we consider, with a certain fixed , the

residue .class ring A=A/E,ME(,) of A with respect to the two-sided
ideal =EME()=EM=ME() (M being the annihilator ideal of the
radical; M=l(N)=r(N)). Now, let us assume our assertain to be true

for rings of smaller composition length. A is then uni-serial. Hence,
as we find readily in analizing the structure of A

EMEO rood , or, 2=(2)

for every different from . Therefore x=r(x) too. It follows now
that the composition residue class moduli of the left ideal AE are, for
each 2=1, 2, ..., all isomorphic to Ae]Ne. Hence AE=EAE.
Similarly EA=EAE, and A is the direct sum of mutually orthogonal
primary rings EAE (t=l, 2, ...). But, as A is a generalized uni-
serial ring, this shows that A is uni-serial.

2) The converse is almost evident, because every residue class ring
of a uni-serial ring is uni-serial again and a uni-serial ring is certainly
Frobeniusean.

The equivalence of the two theorems is thus shown.
Now we turn to our second remark, which is concerned with the

main theorem on gederalized uni-serial rings (F. II, Theorem 17; F. I,
Theorem 11). We have observed already2) that the converse of the
theorem is true if A is an algebra. But the same is the case for
general A. Namely

Theorem 3. If every directly indecomposable finite left A-module
is (cyclic and is) homomarphic to a principal left ideal Ae generated
by a primitive idempotent elements) e and if similarly every directly
indecomposable finite right A-module is (cyclic and is) homorphic to a
principal right ideal eA generated by a primitive idempotent element
e, then A is a generalized uni-serial ring.

To simplify our proof a little, we give first

1) cf. F. I, footnotes 40 and 41.
2) See the remark at the end of F. II.
3) This is equivalent to saying that the module possesses a unique maximal sub-

module; See F. I, l.
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Lemma 3. Let N be the radical of A. If A/N2 is a generalized
uni-serial ring then A itself is so too. (Similarly, if A/N2is uni-
serial then A is so too.)

Proof. Let e be an arbitrary primitive idempotent element in A.
According to our assumption, not only the left module Ae/Ne but also
Ne/N2e is simple (unless it is zero). Hence N2e is the on/y maximal
left subideal of Ne. If e’ is a second primitive idempotent element
such that Ne/NeAe’/Ne’, then Ne is homomorphic to Ae’, and by
the homomorphism Ne’ and Ne are mapped onto Ne and N3e respec-
tively.D Thus

N2e/NSe Ne,/N.e’.

But the right side is, according to our assumption, simple (or zero),
and therefore the left side is so too. Now we take a third idempotent
element e" such that N2e/N3e Ae"/Ne". Then we find NSe/Ne
Ne"/N2e’’. Continuing in this way we see that Ne/N+e is simple
for every i, unless it is zero. Thus Ae possesses a unique composition
series. The same is true for eA, and thus A is a generalized uni-
serial ring.

(If moreover A/N2 is uni-serial, we may choose as e’, e", simply
e itself. Hence A is uni-serial.)

Proof of Theorem 3. Let A satisfy our condition. In view of the
above lemma, it is sufficient to treat the case where N"=O. Then our
purpose is to show that if e’ is an arbitrary primitive idempotent ele-
ment in A then the (completely reducible) left ideal .Ne’ as well as the
(completely reducible) right ideal e’N is simple, unless it is zero.
Suppose therefore the contrary and assume that the left, say, ideal Ne’
is neither simple nor zero. Take then two arbitrary distinct simple
left subideals I and I2 in Ne’.

Case 1) Suppose first I I2. We take primitive idempotent ele-
ments ex and e2 such that Ae/Ne and I2Ae2/Ne2, and consider
the righ ideals

r=eA and r=eA.
Since It Ae/Ne, we have eNe’= O. Hence the eompletely reducible
right ideal exN ( ) possesses a simple right subideal isomorphic to
e’A/e’N. Similarly e2N ( r2) possesses a simple right subideal 2 iso-
morphic to e’A]dN (which is ). Now, we identify the subideals
and of r, r2 and thus eonstruct a new righ$ module :

It =(I:l, :), 1 f’ I;2=i=2.

This module n is directly indecomposable. For, suppose the contrary
and

It 1-2 (tl, 2 =J= 0).

Then /N=(r, N)/nN-t-(r, nN)/N=(h, nN)/N+(2, nN)/nN.

But here the two decompositions must be identical, since the factors
are not.. isomorphic to each other. Let, for instance,

1) For all this of. F. I, 1.
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(1:1, nN)/nN=(h, nN)]nN, (r, nN)]nN=(t., nN)]nN.
Then here exists an elemen tletle which is no contained in nN
(whence a forto no contained in hN). teA=tA=h, because tl]tlN
(--- (h, nN)/nN) is simple whence tiN is the only maximal submodule
of tl. Now we wan to show ha telA=h is isomorphic to r=eA.
For tha purpose, pu 6=u+ (ue r, e r.); here g and are no uni-
quely deermined, bu are unique mod .. It follows, since (h, nN)=
(-r, nN), tha u rN bu e rN. Thus ue rlN either and uelA rl.- ( e eA rl) is an (operaor-) auomorphism of rl. Now, sup-
pose tl=0 for an elemen a in eA. Then u+a=0 whence

and therefore a e eN, since elN. But then va (e 2NeN)= 0, whence
ua= 0 and a= 0. It follows now that the homomorphic mapping
a-- ta (ae eA) is indeed an isomorphism between tA=t and r=eA.

Similarly tr2. But this is a contradiction, as a simple com-
putation of composition lengths shows, and thus n must be directly in-
decomposable.

On the other hand, n can not be homomorphic to a principal right
ideal generated by a primitive idempotent element, because n/nN is not
simple. Thus we are led to a contradiction, and therefore the case 1)
can not occur.

Case 2) [1--_I2. On putting I=Ad, we consider a second left
module m which is isomorphic to I. Let m and m2 be simple sub-
moduli of m corresponding respectively to I1 and I by the isomorphism.
We then identify I with ml, to obtain a new left module n"

n=(l, m), ’ m=lz=ml.

Then we find without much difficulty that n-is directly indecomposable
for the detail of the proof cf. G. KSthe, 1. c., p. 40 or 5 of H.
Brummund’s thesis. But this left module n is not homomorphic to a
principal left ideal generated by a primitive idempotent element, for
nINn is not simple. Thus Case 2) is also impossible.

We deduce now that Ne’ must be simple (or zero). Similarly e’N
is always simple (or zero). Hence A is a generalized uni-serial ring,
q.e.d.

In connection with his theory of uni-serial rings, G. KSthe pro-
pounded the problem to determine the general type of rings A (possess-
ing a unit element and satisfying the minimum condition (whence also
the maximum condition) for left and right ideals) such that every A-
module is a direct sum of cyclic submoduli. For commutative rings
the notion of uni-serial rings settles this problem. As for non-com-
mutative rings, this is not the case. In fact, generalized uni-serial rings
enjoy the proposed property. But, even generalized uni-serial rings are

1) H. Brummud, Uber Gruppenringe mit einem KoeffizientenkSrper der Charak-
teristik p, Dissertation Miinster (1939).

2) G. KSthe, I. c., {} 2.
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not general enough, and the writer regrets to have to leave the ques-
tion open here. For instance, let A be an algebra consisting of all
matrices (in a given field) of the form

a0 0}0 b 0
cda

Then every right A-module is, as a rather complicated group-theoreti-
cal consideration shows, a direct sum of cyclic submoduli each of which
is homomorphic to a principal right ideal generated by a primitive
idempotent element, and moreover every left A-module is a direct sum
of cyclic submoduli which are however not necessarily homomorphic to
a principal left ideal generated by a primitive idempotent element.D
But A is not a generalized uni-serial ring.

Further, H. Brummund showed in his paper 1. c. that a non-cyclic
p-group always possesses arbitrary large directly indecomposable re-
presentations in a field of characteristic p, that is, the group algebra
of a non-cyclic p-group over a field of characteristic p has arbitrary
large directly indecomposable left, say, moduli. Indeed, his argument
shows that the same holds for A such that a left module N-e/Ne,
where N is the radical and e is a suitable primitive idempotent ele-
ment, contains at le.ast two simple submoduli isomorphic to each other.
Now arises the problem to determine general type of rings which
possess arbitrary large directly indecomposable left or right moduli.
But, the writer has to leave also this problem open;the notion of
generalized uni-serial rings is, a fortiori, too special to settle this
question.

1) Thus this example shows also that in the above theorem 2 it is essential to
consider both left and right moduli at the same time.


