81. On the General Zetafuchsian Functions.¹⁰

By Masao SUGAWARA. Tokyo Bunrikwa-Daigaku, Tokyo. (Comm. by T. TAKAGI, M.I.A., Oct. 12, 1940.)

1. Introduction.

In a previous paper²⁾ I have constructed a theory of automorphic functions of higher dimensions. Using the same notations as in that paper, we will call the space \mathfrak{A} the set of symmetrical matrices Z of the dimension n with the condition $E > Z'\overline{Z}$. We put now R(Z) = $-\log |E - \overline{Z}Z|$, that is $|E - \overline{Z}Z| = e^{-R(Z)}$. Then $R(Z) \rightarrow o$ or ∞ according as $Z \rightarrow O$ or Z tends to the boundary of the space \mathfrak{A} and conversely.

Matrices U of dimension 2n satisfying the conditions U'JU=J, $U'S\bar{U}=S$, where $J=\begin{pmatrix} O & E \\ -E & O \end{pmatrix}$ and $S=\begin{pmatrix} E & O \\ O & -E \end{pmatrix}$ are of the form $U=\begin{pmatrix} U_1 & U_2 \\ U_3 & U_4 \end{pmatrix}=\begin{pmatrix} \bar{U}_4 & \bar{U}_3 \\ U_3 & U_4 \end{pmatrix}$ and form a group Γ .

When Z is an inner or a boundary point of \mathfrak{A} , $W = (U_1Z + U_2) (U_3Z + U_4)^{-1}$ is also an inner or a boundary point of \mathfrak{A} respectively, so that we called this transformation a displacement of the space \mathfrak{A} induced by $U \in \Gamma$. We then have

Lemma 1. If $W = (U_1Z + U_2)(U_3Z + U_4)^{-1}$, $U = \begin{pmatrix} U_1 & U_2 \\ U_3 & U_4 \end{pmatrix} \in \Gamma$, then $\| U_3Z + U_4 \|^{-2} = \frac{|E - \overline{W}W|}{|E - \overline{Z}Z|}$, that is $\| U_3Z + U_4 \|^{-2} = e^{R(Z) - R(W)}$.

Proof. Every point of \mathfrak{A} can be represented in the form $Z=PQ^{-1}$, where P, Q make a pair of symmetrical matrices with the condition $|Q| \neq 0$. Let $\binom{P_1}{Q_1} = U\binom{P}{Q}$ then P_1, Q_1 make also a pair of symmetrical matrices with the condition $|Q_1| \neq 0$, such that $W=P_1Q_1^{-1}$, and

$$\begin{split} E - \overline{W}W &= E - \overline{Q}_{1}^{\prime - 1}\overline{P}_{1}^{\prime}P_{1}Q_{1}^{-1} = \overline{Q}_{1}^{\prime - 1}(\overline{Q}_{1}^{\prime}Q_{1} - \overline{P}_{1}^{\prime}P_{1})Q_{1}^{-1} \\ &= \overline{(U_{3}P + U_{4}Q)^{\prime - 1}}(\overline{Q}^{\prime}Q - \overline{P}^{\prime}P)(U_{3}P + U_{4}Q)^{-1} \\ &= \overline{(U_{3}Z + U_{4})^{\prime - 1}}(E - \overline{Z}Z)(U_{3}Z + U_{4})^{-1} \end{split}$$

Taking the determinants, the lemma follows at once.

¹⁾ Cf. H. Poincaré. Memoire sur les fonctions fuchsiennes. Memoire sur les fonctions zetafuchsinnes (Oeuvre Tom II.)

²⁾ Masao Sugawara. Über eine allgemeine Theorie der fuchssche Gruppen und Theta-Reihen. Ann. Math. 41; cited with S.

2. Riemannian space.

Now we introduce a noneuclidean metric in the space \mathfrak{A} , namely we take as a line-element an expression $ds = \sqrt{SpdA(E - \overline{A}A)^{-1}d\overline{A}'(E - A\overline{A})^{-1}}$, invariant under \mathfrak{B}^{1} and consider \mathfrak{A} as a riemannian space with this metric.

Any subgroup \mathfrak{B} of the group \mathfrak{B} having no infinitesimal element is called a fuchsian group. As in the classical case for one variable²⁾ the space \mathfrak{A} can be divided into "normal polyhedrons". i. e. congruent convex polyhedrons such that any two inner points of each normal polyhedron are not equivalent by the displacements of the group \mathfrak{B} , while the sides are equivalent in pairs.

A normal polyhedron can be taken as a fundamental domain of the group \mathfrak{G} . The number of normal polyhedrons having an inner point of \mathfrak{A} in common is finite.

Lemma 2. If the noneuclidean distance of a point B from an inner point A is sufficiently small, then |R(A) - R(B)| is uniformly bounded with respect to A.

Proof. Let H be the image of B by the displacement

$$U_{A} = \begin{pmatrix} C_{1} & O \\ O & \bar{C}_{1} \end{pmatrix} \begin{pmatrix} E & -A \\ -\bar{A} & E \end{pmatrix} = \begin{pmatrix} C_{1} & -C_{1}A \\ -\bar{C}_{1}\bar{A} & \bar{C}_{1} \end{pmatrix}, \quad C_{1} = (C')^{-1}, \quad E - A'\bar{A} = C'\bar{C},$$

which transforms A into O. Put

$$U_A^{-1} = \begin{pmatrix} \overline{C}'_1 & AC'_1 \\ \overline{A}\overline{C}'_1 & C'_1 \end{pmatrix} = \begin{pmatrix} U_1 & U_2 \\ U_3 & U_4 \end{pmatrix}, \qquad \text{then}$$

$$|R(A) - R(B)| = \log \frac{|E - BB|}{|E - \overline{A}A|} = \log \frac{|E - HH|}{|E|} + \log \frac{||U_4||^2}{||U_3H + U_4||^2}$$
$$= \log |E - \overline{H}H| - \log ||U_4^{-1}U_3H + E||^2.$$

Here $U_4^{-1}U_3 = C_1'^{-1}\overline{A}\overline{C_1'}$ is bounded, because

$$Sp(C_{1}^{\prime-1}\bar{A}\bar{C}_{1}^{\prime})(\overline{C_{1}^{\prime-1}\bar{A}\bar{C}_{1}^{\prime}})^{\prime} = Sp(C\bar{A}\bar{C}^{-1})(C^{\prime-1}A\bar{C}^{\prime}) = Sp\bar{C}^{\prime}C\bar{A}\bar{C}^{-1}C^{\prime-1}A$$
$$= Sp(E - \bar{A}A)\bar{A}(E - A\bar{A})^{-1}A = Sp\bar{A}(E - A\bar{A})(E - A\bar{A})^{-1}A = Sp\bar{A}A \leq n.$$

On the other hand, when B is near to A, H is also near to O. Hence |R(A)-R(B)| is bounded.

The volume V in the riemannian space \mathfrak{A} is given by

$$V=2^{rac{n(n-1)}{2}}\int\!\!rac{dZ^{*}}{\mid E-\overline{Z}Z\mid^{n+1}}$$
 ,

 $dZ^* = \prod_{i \leq j} da_{ij} db_{ij}, \ Z = (a_{ij} + b_{ij}i),$

where

2) H. Weyl. Die Idee der Riemannschen Fläche, § 20.

because the determinant of the quadratic form $ds^2 = SpdPd\overline{P'}$ in a_{ij} , b_{ij} , where $dP = C'^{-1}dZC^{-1}$, is $= 2^{n(n-1)} |C'^{-1}C^{-1}|^{n+1} |\overline{C'}^{-1}\overline{C}^{-1}|^{n+1} = 2^{n(n-1)} |E - \overline{Z}Z|^{-2(n+1)}$, as we can verify by calculation.

By a suitable unitary transformation U, the non-negative herimitian form $Z\bar{Z}$ can be transformed into the diagonal form $D = \begin{pmatrix} a_1^2 \cdots 0 \\ \cdots \cdots \\ 0 & \cdots \end{pmatrix}, \ 0 \leq a_i^2 \leq 1$. Let UZ = Y, then $Y\bar{Y}' = D$ and the elements

 y_{ik} of Y are not greater than 1 in absolute values. Hence we obtain an evalution for the value of the domain $R(Z) \leq R(B)$, B being a given point,

$$V = \int_{R(Z) \le R(B)} \frac{dY}{|E - \overline{Z}Z|^{n+1}} \le \frac{2^{\frac{n(n-1)}{2}}}{|E - \overline{B}B|^{n+1}} \int dY$$
$$\le \frac{2^{n^2} \pi^{\frac{n(n+1)}{2}}}{|E - \overline{B}B|^{n+1}} = 2^{n^2} \pi^{\frac{n(n+1)}{2}} e^{(n+1)R(B)}.$$

Lemma 3. Let Z be an inner point of a normal polyhedron F of a fuchsian group \mathfrak{G} . Let σ be the volume of a (noneuclidean) sphere k around the point Z with so small a radius that it lies entirely in F. Then the number N(B) of equivalent points to Z with respect to the group \mathfrak{G} in the domain $R(A) \leq R(B)$, B being a given point, is at most

$$2^{n^2} \pi^{\frac{n(n+1)}{2}} \sigma^{-1} e^{(n+1)(R(B)+\lambda)}$$

Here λ means a finite constant depending on the radius of the sphere k but not on B and Z.

Proof. Let λ be the quantity such that from (the (noneuclidean) distance of Q from P) \leq (the radius of k), follows $|R(P) - R(Q)| \leq \lambda$. λ exists and is independent of P by the lemma 2.

Then the total volume of the images of the sphere k whose centres lie in the domain $R(A) \leq R(B)$ does not exceed the volume of the domain $R(A) \leq R(B) + \lambda$, namely $N(B)\sigma \leq 2^{n^2} \pi^{\frac{n(n+1)}{2}} e^{(n+1)(R(B)+\lambda)}$.

The same inequality also holds when Z lies on the boundary of F, but not on the boundary of \mathfrak{A} , and the radius of the sphere k is sufficiently small, if we multiply an absolute constant g to the right.

3. Thetafuchsian function.

From the previous consideration, we can easily deduce the absolute and uniform convergence of a thetafuchsian function

$$heta_k(Z) = \sum_{U \in \mathfrak{G}} \frac{1}{|U_3 Z + U_4|^{2k(n+1)}}, \quad k > 1,$$

where Σ sums over all the displacements $U = \begin{pmatrix} U_1 & U_2 \\ U_3 & U_4 \end{pmatrix}$ of a fuchsian group \Im .

No. 8.]

M. SUGAWARA.

Indeed, denote with \mathfrak{k}_m the domain $R(A) \leq mr, r > 0$ and put $\mathfrak{v}_m = \mathfrak{k}_m - \mathfrak{k}_{m-1}$. Divide the terms of the series Σ , whose terms are the absolute values of the terms of $\theta_k(Z)$, into parts G_1, G_2, \ldots such that G_m is the sum of terms corresponding to displacements U for which $W = (U_1Z + U_2)(U_3Z + U_4)^{-1}$ lie in the domain \mathfrak{v}_m . Then every term of G_m is smaller than $e^{(n+1)k(R(Z)-(m-1)r)}$ and the number of such terms is at most $2^{n^2}\pi^{\frac{n(n+1)}{2}}g\sigma^{-1}e^{(n+1)(mr+\lambda)}$, so that

$$G_m < 2^{n^2} \pi^{\frac{n(n+1)}{2}} g \sigma^{-1} e^{(n+1)(\lambda+mr)} e^{(n+1)k(R(Z)-(m-1)r)} = C_0 e^{-(n+1)m(k-1)R(Z)},$$

where C_0 is a constant independent of m. Hence follows the absolute and uniform convergence of $\theta_k(Z)$ in \mathfrak{A} when k > 1.

4. Zetafuchsian functions.

Let \mathfrak{G} be a fuchsian group with finite number of generators. Let Γ be a representation by matrices of the dimension p of the group \mathfrak{G} . Let $\sum_{1}, \sum_{2}, \ldots, \sum_{\nu}$ be the matrices corresponding to generators of \mathfrak{G} and their inverses, so that any substitution S of Γ can be written in the form $S = \sum_{1}^{a_1} \sum_{2}^{a_2} \ldots \sum_{q}^{a_q}$, where $a_1, a_2, \ldots, a_q > 0$; we call the minimum ρ of the number $a_1 + a_2 + \cdots + a_q$ the exponent of S. The exponent of S is not greater than that of the corresponding element S_0 of \mathfrak{G} .

Theorem: The series

$$Z_{k}(Z) = \sum_{S_{0} \in \mathfrak{G}} S^{-1} |U_{3}Z + U_{4}|^{-2k(n+1)}$$

is absolutely and uniformly convergent in \mathfrak{A} when k is sufficiently large. Hereby $S_0 = \begin{pmatrix} U_1 & U_2 \\ U_3 & U_4 \end{pmatrix}$ and S is the element of Γ corresponding to S_0 . (The terms and the value of $Z_k(Z)$ is thus p dimensional matrices.)

For a displacement $T_0 = \begin{pmatrix} T_1 & T_2 \\ T_3 & T_4 \end{pmatrix}$ of \mathfrak{G} holds the transformation formula,

$$Z_k(T_0(Z)) = |T_3Z + T_4|^{2k(n+1)}TZ_k(Z),$$

where T is the element of Γ corresponding to T_0 .

We will call the series $Z_k(Z)$ a zetafuchsian function of Z

Proof. The second part is evident. For the proof of the 1st part, we can assume without loss of generarity that 0 and Z lie in the same normal polyhedron R_0 .

Join 0 with S_0Z by an arc l of a geodesic in \mathfrak{A} . Let R_0, R_1, \ldots, R_t be the normal polyhedrons through which l passes successively. Then we have clearly $\rho \leq t$, where ρ is the exponent of S. Let γ be the greatest lower bound of the length of curves joining in R_0 two sides of R_0 without a common point, then $\gamma > 0$. Let C_0 be a common side of R_0 and R_1, C_1 that of R_1 and R_2 and C_2 a side of R_3 such that C_0, C_1, C_2 have no point in common. Let μ_0 the greatest lower bound of the length of curves connecting C_0 and C_2 and passing through $C_1; \mu_1, \mu_2, \ldots, \mu_{t-2}$ be

370

the corresponding numbers with respect to $R_1R_2R_3$, $R_2R_3R_4$, ..., $R_{t-2}R_{t-1}R_t$. Let μ be the smallest of μ_0 , μ_1 , ..., μ_{t-2} , then $\mu > 0$. The number of normal polyhedrons having a point in common is finite. Let h be the least upper bound of the number of such polyhedrons. h is obviously also finite. Then we get $t \leq R^* \left(\frac{1}{\gamma} + \frac{h}{\mu}\right)$, where R^* means the shortest distance from 0 to S_0Z . Consequently we have $t < aR^*$ with a constant a; hence $\rho < aR^*$. Now the noneuclidean length l_A of the euclidean straight line from 0 to $A = S_0Z$ is

$$l_{A} = \int_{0}^{1} d\lambda \sqrt{SpA(E - \lambda^{2}\bar{A}A)^{-1}\bar{A}(E - \lambda^{2}A\bar{A})^{-1}} = \int_{0}^{1} d\lambda \sqrt{Sp(E - \lambda^{2}A\bar{A})^{-1}A\bar{A}(E - \lambda^{2}A\bar{A})^{-1}} .$$
 (to be integrated along the real value of λ .)

From the relations

$$A(E-\lambda^2\bar{A}A)=(E-\lambda^2A\bar{A})A, \qquad A(E-\lambda^2\bar{A}A)^{-1}=(E-\lambda^2A\bar{A})^{-1}A,$$

and

$$\begin{split} Sp(E - \lambda^2 A \bar{A})^{-1} A \bar{A} (E - \lambda^2 A \bar{A})^{-1} \\ &= Sp \{ \bar{U}'(E - \lambda^2 D) U \}^{-1} \bar{U}' D U \{ \bar{U}'(E - \lambda^2 D) U \}^{-1} \\ &= Sp U^{-1} (E - \lambda^2 D)^{-1} U \bar{U}' D U U^{-1} (E - \lambda^2 D)^{-1} U \\ &= Sp(E - \lambda^2 D)^{-1} D (E - \lambda^2 D)^{-1} = \sum_{i=1}^n \left(\frac{a_i}{1 - \lambda^2 a_i^2} \right)^2, \end{split}$$

where U is a unitary matrix such that $UA\bar{A}\bar{U}'=D=\begin{pmatrix}a_1^2,\ldots,0\\\ldots,a_n^2\end{pmatrix}$ is of a diagonal form, it follows that

$$\begin{split} l_{A} &= \int_{0}^{1} \sqrt{\sum_{i=1}^{n} \left(\frac{a_{i}}{1 - \lambda^{2} a_{i}^{2}} \right)^{2}} \, d\lambda < \sum_{i=1}^{n} \int_{0}^{1} \frac{a_{i}}{1 - \lambda^{2} a_{i}^{2}} \, d\lambda \\ &= \frac{1}{2} \log \prod_{i=1}^{n} \frac{1 + a_{i}}{1 - a_{i}} \, . \end{split}$$

Hence we have

$$2R^* < 2l_A < \log \prod_{i=1}^n (1+a_i)^2 - \log |E - \bar{A}A|, \quad R^* < n \log 2 + \frac{1}{2}R(A),$$

therefore $\rho < C + \frac{a}{2}R(A)$, where C and a means constants. On the other hand, let M be greatest among the absolute values of the element of $\sum_1, \sum_2, \dots, \sum_{\nu}$. Then the elements S are not greater than $(pM)^{\rho} < C_0 e^{\frac{a}{2}R(A)\log Mp}$ in absolute value, where C_0 means a constant. Hence we get

No. 8.]

$$(Mp)^{\rho} || U_3 Z + U_4 ||^{-2(n+1)k} < C_0 e^{-(n+1)k(R(A)-R(Z)) + \frac{a}{2}R(A)\log Mp},$$

from the relation

$$||U_3Z+U_4||^{-2(n+1)k}=e^{-(n+1)k(R(A)-R(Z))}.$$

Now let us take k so large that $(n+1)k-2(n+1) > \frac{a}{2} \log Mp$. Let $s_{\mu\nu}$ be an element of S^{-1} . Then we have

 $|s_{\mu\nu}| ||U_3Z + U_4||^{-2k(n+1)} < ||U_3Z + U_4||^{-4(n+1)}.$

Therefore the series $Z_k(Z)$ is absolutely and uniformly convergent in \mathfrak{A} .

I express my hearty thanks to Mr. S. Iyanaga for his kind criticism.

¹⁾ Because the exponent of S^{-1} is equal to that of S.