81. On the General Zetafuchsian Functions. ${ }^{1)}$

By Masao Sugawara.
Tokyo Bunrikwa-Daigaku, Tokyo.
(Comm. by T. Takagi, m.ia., Oct. 12, 1940.)

1. Introduction.

In a previous paper ${ }^{2)}$ I have constructed a theory of automorphic functions of higher dimensions. Using the same notations as in that paper, we will call the space \mathfrak{A} the set of symmetrical matrices Z of the dimension n with the condition $E>Z^{\prime} \bar{Z}$. We put now $R(Z)=$ $-\log |E-\bar{Z} Z|$, that is $|E-\bar{Z} Z|=e^{-R(Z)}$. Then $R(Z) \rightarrow 0$ or ∞ according as $Z \rightarrow O$ or Z tends to the boundary of the space \mathfrak{A} and conversely.

Matrices U of dimension $2 n$ satisfying the conditions $U^{\prime} J U=J$, $U^{\prime} S \bar{U}=S$, where $J=\left(\begin{array}{cc}O & E \\ -E & O\end{array}\right)$ and $S=\left(\begin{array}{cc}E & O \\ O & -E\end{array}\right)$ are of the form $U=$ $\left(\begin{array}{ll}U_{1} & U_{2} \\ U_{3} & U_{4}\end{array}\right)=\left(\begin{array}{ll}\bar{U}_{4} & \bar{U}_{3} \\ U_{3} & U_{4}\end{array}\right)$ and form a group Γ.

When Z is an inner or a boundary point of \mathfrak{A}, $W=\left(U_{1} Z+U_{2}\right)\left(U_{3} Z+U_{4}\right)^{-1}$ is also an inner or a boundary point of \mathfrak{M} respectively, so that we called this transformation a displacement of the space \mathcal{A} induced by $U \in \Gamma$. We then have

Lemma 1. If $W=\left(U_{1} Z+U_{2}\right)\left(U_{3} Z+U_{4}\right)^{-1}, \quad U=\left(\begin{array}{ll}U_{1} & U_{2} \\ U_{3} & U_{4}\end{array}\right) \in \Gamma$, then $\left\|U_{3} Z+U_{4}\right\|^{-2}=\frac{|E-\bar{W} W|}{|E-\bar{Z} Z|}$, that is $\left\|U_{3} Z+U_{4}\right\|^{-2}=e^{R(Z)-R(W)}$.

Proof. Every point of $\mathfrak{\Re}$ can be represented in the form $Z=P Q^{-1}$, where P, Q make a pair of symmetrical matrices with the condition $|Q| \neq 0$. Let $\binom{P_{1}}{Q_{1}}=U\binom{P}{Q}$ then P_{1}, Q_{1} make also a pair of symmetrical matrices with the condition $\left|Q_{1}\right| \neq 0$, such that $W=P_{1} Q_{1}^{-1}$, and

$$
\begin{aligned}
E-\bar{W} W & =E-\bar{Q}_{1}^{\prime-1} \bar{P}_{1}^{\prime} P_{1} Q_{1}^{-1}=\bar{Q}_{1}^{\prime-1}\left(\bar{Q}_{1}^{\prime} Q_{1}-\bar{P}_{1}^{\prime} P_{1}\right) Q_{1}^{-1} \\
& =\overline{\left(U_{3} P+U_{4} Q\right)^{\prime-1}}\left(\bar{Q}^{\prime} Q-\bar{P}^{\prime} P\right)\left(U_{3} P+U_{4} Q\right)^{-1} \\
& =\overline{\left(U_{3} Z+U_{4}\right)^{\prime}}-1(E-\bar{Z} Z)\left(U_{3} Z+U_{4}\right)^{-1}
\end{aligned}
$$

Taking the determinants, the lemma follows at once.

[^0]
2. Riemannian space.

Now we introduce a noneuclidean metric in the space \mathfrak{A}, namely we take as a line-element an expression $d s=\sqrt{\operatorname{SpdA}(E-\bar{A} A)^{-1} d \bar{A}^{\prime}(E-A \bar{A})^{-1}}$, invariant under $\mathfrak{B}^{1)}$ and consider \mathfrak{A} as a riemannian space with this metric.

Any subgroup $(\mathbb{S}$ of the group \mathfrak{B} having no infinitesimal element is called a fuchsian group. As in the classical case for one variable ${ }^{2)}$ the space \mathfrak{N} can be divided into " normal polyhedrons". i. e. congruent convex polyhedrons such that any two inner points of each normal polyhedron are not equivalent by the displacements of the group \mathbb{G}, while the sides are equivalent in pairs.

A normal polyhedron can be taken as a fundamental domain of the group (G). The number of normal polyhedrons having an inner point of \mathfrak{A} in common is finite.

Lemma 2. If the noneuclidean distance of a point B from an inner point A is sufficiently small, then $|R(A)-R(B)|$ is uniformly bounded with respect to A.

Proof. Let H be the image of B by the displacement

$$
U_{A}=\left(\begin{array}{cc}
C_{1} & O \\
O & \bar{C}_{1}
\end{array}\right)\left(\begin{array}{c}
E-A \\
-\bar{A} \\
E
\end{array}\right)=\left(\begin{array}{cc}
C_{1} & -C_{1} A \\
-\bar{C}_{1} \bar{A} & \bar{C}_{1}
\end{array}\right), C_{1}=\left(C^{\prime}\right)^{-1}, E-A^{\prime} \bar{A}=C^{\prime} \bar{C},
$$

which transforms A into O. Put

$$
\begin{gathered}
U_{A}^{-1}=\left(\begin{array}{cc}
\bar{C}_{1}^{\prime} & A C_{1}^{\prime} \\
\bar{A} C_{1}^{\prime} & C_{1}^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
U_{1} & U_{2} \\
U_{3} & U_{4}
\end{array}\right), \\
|R(A)-R(B)|=\log \frac{|E-\bar{B} B|}{|E-\bar{A} A|}=\log \frac{|E-\bar{H} H|}{|E|}+\log \frac{\left\|U_{4}\right\|^{2}}{\left\|U_{3} H+U_{4}\right\|^{2}} \\
=\log |E-\bar{H} H|-\log | | U_{4}^{-1} U_{3} H+E \|^{2} .
\end{gathered}
$$

Here $U_{4}^{-1} U_{3}=C_{1}^{\prime-1} \bar{A} \overline{C_{1}^{\prime}}$ is bounded, because

$$
\begin{aligned}
& S p\left(C_{1}^{\prime-1} \bar{A} \bar{C}_{1}^{\prime}\right)\left(C_{1}^{\prime-1} \bar{A} \bar{C}_{1}^{\prime}\right)^{\prime}=S p\left(C \bar{A} \bar{C}^{-1}\right)\left(C^{\prime-1} A \bar{C}^{\prime}\right)=S p \bar{C}^{\prime} C \bar{A} \bar{C}^{-1} C^{\prime-1} A \\
& \quad=S p(E-\bar{A} A) \bar{A}(E-A \bar{A})^{-1} A=S p \bar{A}(E-A \bar{A})(E-A \bar{A})^{-1} A=S p \bar{A} A \leqq n
\end{aligned}
$$

On the other hand, when B is near to A, H is also near to O. Hence $|R(A)-R(B)|$ is bounded.

The volume V in the riemannian space \mathfrak{A} is given by
where

$$
\begin{aligned}
V & =2^{\frac{n(n-1)}{2}} \int \frac{d Z^{*}}{|E-\bar{Z} Z|^{n+1}}, \\
d Z^{*} & =\prod_{i \leq j} d a_{i j} d b_{i j}, Z=\left(a_{i j}+b_{i j} i\right),
\end{aligned}
$$

1) S. p. 491. \mathfrak{B} means the group of all displacements of $\mathfrak{\Re}$.
2) H. Weyl. Die Idea der Riemannschen Fläche, § 20.
because the determinant of the quadratic form $d s^{2}=S p d P \overline{d P^{\prime}}$ in $a_{i j}$, $b_{i j}$, where $\quad d P=C^{\prime-1} d Z C^{-1}, \quad$ is $\quad=2^{n(n-1)}\left|C^{\prime-1} C^{-1}\right| n^{n+1}\left|\bar{C}^{\prime-1} \bar{C}^{-1}\right|^{n+1}=$ $2^{n(n-1)}|E-\bar{Z} Z|^{-2(n+1)}$, as we can verify by calculation.

By a suitable unitary transformation U, the non-negative herimitian form $Z \bar{Z}$ can be transformed into the diagonal form $D=$ $\left(\begin{array}{c}a_{1}^{2} \cdots \cdots \cdot \\ \cdots \cdots \cdots \\ 0 \cdots \cdots \alpha_{n}^{2}\end{array}\right), 0 \leqq a_{i}^{2} \leqq 1$. Let $U Z=Y$, then $Y \bar{Y}^{\prime}=D$ and the elements $y_{i k}$ of Y are not greater than 1 in absolute values. Hence we obtain an evalution for the value of the domain $R(Z) \leqq R(B), B$ being a given point,

$$
\begin{aligned}
V & =\int_{R(Z) \leq R(B)} \frac{d Y}{|E-\bar{Z} Z|^{n+1}} \leqq \frac{2^{\frac{n(n-1)}{2}}}{|E-\bar{B} B|^{n+1}} \int d Y \\
& \leqq \frac{2^{n^{2} \pi^{\frac{n(n+1)}{2}}}}{|E-\bar{B} B|^{n+1}}=2^{n^{2} \pi^{\frac{n(n+1)}{2}} e^{(n+1) R(B)}} .
\end{aligned}
$$

Lemma 3. Let Z be an inner point of a normal polyhedron F of a fuchsian group (5). Let σ be the volume of a (noneuclidean) sphere k around the point Z with so small a radius that it lies entirely in F. Then the number $N(B)$ of equivalent points to Z with respect to the group (S) in the domain $R(A) \leqq R(B), B$ being a given point, is at most

$$
2^{n^{2}} \pi^{\frac{n(n+1)}{2}} \sigma^{-1} e^{(n+1)(R(B)+\lambda)} .
$$

Here λ means a finite constant depending on the radius of the sphere k but not on B and Z.

Proof. Let λ be the quantity such that from (the (noneuclidean) distance of Q from P) \leqq (the radius of k), follows $|R(P)-R(Q)| \leqq \lambda . \lambda$ exists and is independent of P by the lemma 2.

Then the total volume of the images of the sphere k whose centres lie in the domain $R(A) \leqq R(B)$ does not exceed the volume of the domain

The same inequality also holds when Z lies on the boundary of F, but not on the boundary of \mathfrak{A}, and the radius of the sphere k is sufficiently small, if we multiply an absolute constant g to the right.

3. Thetafuchsian function.

From the previous consideration, we can easily deduce the absolute and uniform convergence of a thetafuchsian function

$$
\theta_{k}(Z)=\sum_{U \in \Theta} \frac{1}{\left|U_{3} Z+U_{4}\right|^{2 /(n+1)}}, \quad k>1,
$$

where \sum sums over all the displacements $U=\left(\begin{array}{ll}U_{1} & U_{2} \\ U_{3} & U_{4}\end{array}\right)$ of a fuchsian group (9).

Indeed, denote with \mathfrak{f}_{m} the domain $R(A) \leqq m r, r>0$ and put $\mathfrak{b}_{m}=$ $\mathfrak{f}_{m}-\mathfrak{f}_{m-1}$. Divide the terms of the series \sum, whose terms are the absolute values of the terms of $\theta_{k}(Z)$, into parts G_{1}, G_{2}, \ldots such that G_{m} is the sum of terms corresponding to displacements U for which $W=$ $\left(U_{1} Z+U_{2}\right)\left(U_{3} Z+U_{4}\right)^{-1}$ lie in the domain \mathfrak{v}_{m}. Then every term of G_{m} is smaller than $e^{(n+1) k(R(Z)-(m-1) r)}$ and the number of such terms is at most $2^{n^{2}} \pi^{\frac{n(n+1)}{2}} g \sigma^{-1} e^{(n+1)(m r+\lambda)}$, so that

$$
G_{m}<2^{n^{2}} \pi^{\frac{n(n+1)}{2}} g \sigma^{-1} e^{(n+1)(\lambda+m r)} e^{(n+1) k(R(Z)-(m-1) r)}=C_{0} e^{-(n+1) m(k-1) R(Z)},
$$

where C_{0} is a constant independent of m. Hence follows the absolute and uniform convergence of $\theta_{k}(Z)$ in \mathfrak{A} when $k>1$.

4. Zetafuchsian functions.

Let $\$ 8$ be a fuchsian group with finite number of generators. Let Γ be a representation by matrices of the dimension p of the group \mathbb{G}. Let $\sum_{1}, \sum_{2}, \ldots, \sum_{\nu}$ be the matrices corresponding to generators of \mathfrak{G} and their inverses, so that any substitution S of Γ can be written in the form $S=\sum_{1}^{a_{1}} \sum_{2}^{\alpha_{2}} \ldots \sum_{q}^{a_{q}}$, where $a_{1}, a_{2}, \ldots, \alpha_{q}>0$; we call the minimum ρ of the number $a_{1}+a_{2}+\cdots+a_{q}$ the exponent of S. The exponent of S is not greater than that of the corresponding element S_{0} of \mathbb{C}.

Theorem: The series

$$
Z_{k}(Z)=\sum_{S_{0} \in \mathscr{E}} S^{-1}\left|U_{3} Z+U_{4}\right|^{-2 k(n+1)}
$$

is absolutely and uniformly convergent in \mathfrak{A} when k is sufficiently large. Hereby $S_{0}=\left(\begin{array}{cc}U_{1} & U_{2} \\ U_{3} & U_{4}\end{array}\right)$ and S is the element of Γ corresponding to S_{0}. (The terms and the value of $Z_{k}(Z)$ is thus p dimensional matrices.)

For a displacement $T_{0}=\left(\begin{array}{ll}T_{1} & T_{2} \\ T_{3} & T_{4}\end{array}\right)$ of $\in \mathcal{G}$ holds the transformation formula,

$$
Z_{k}\left(T_{0}(Z)\right)=\left|T_{3} Z+T_{4}\right|^{2 k(n+1)} T Z_{k}(Z)
$$

where T is the element of Γ corresponding to T_{0}.
We will call the series $Z_{k}(Z)$ a zetafuchsian function of Z
Proof. The second part is evident. For the proof of the 1st part, we can assume without loss of generarity that 0 and Z lie in the same normal polyhedron R_{0}.

Join 0 with $S_{0} Z$ by an arc l of a geodesic in $A_{\text {. Let }} R_{0}, R_{1}, \ldots, R_{t}$ be the normal polyhedrons through which l passes successively. Then we have clearly $\rho \leqq t$, where ρ is the exponent of S. Let γ be the greatest lower bound of the length of curves joining in R_{0} two sides of R_{0} without a common point, then $r>0$. Let C_{0} be a common side of R_{0} and R_{1}, C_{1} that of R_{1} and R_{2} and C_{2} a side of R_{3} such that C_{0}, C_{1}, C_{2} have no point in common. Let μ_{0} the greatest lower bound of the length of curves connecting C_{0} and C_{2} and passing through $C_{1} ; \mu_{1}, \mu_{2}, \ldots, \mu_{t-2}$ be
the corresponding numbers with respect to $R_{1} R_{2} R_{3}, R_{2} R_{3} R_{4}, \ldots, R_{t-2} R_{t-1} R_{t}$. Let μ be the smallest of $\mu_{0}, \mu_{1}, \ldots, \mu_{t-2}$, then $\mu>0$. The number of normal polyhedrons having a point in common is finite. Let h be the least upper bound of the number of such polyhedrons. h is obviously also finite. Then we get $t \leqq R^{*}\left(\frac{1}{r}+\frac{h}{\mu}\right)$, where R^{*} means the shortest distance from 0 to $S_{0} Z$. Consequently we have $t<\alpha R^{*}$ with a constant α; hence $\rho<\alpha R^{*}$. Now the noneuclidean length l_{A} of the euclidean straight line from 0 to $A=S_{0} Z$ is

$$
\begin{aligned}
l_{A} & \left.=\int_{0}^{1} d \lambda \sqrt{S p A\left(E-\lambda^{2} \bar{A} A\right)^{-1} \bar{A}\left(E-\lambda^{2} A \bar{A}\right)^{-1}} \quad \begin{array}{l}
\text { to be integrated } \\
\text { along the real } \\
\text { value of } \lambda .
\end{array}\right) \\
& =\int_{0}^{1} d \lambda \sqrt{S p\left(E-\lambda^{2} A \bar{A}\right)^{-1} A \bar{A}\left(E-\lambda^{2} A \bar{A}\right)^{-1}} .
\end{aligned}
$$

From the relations

$$
A\left(E-\lambda^{2} \bar{A} A\right)=\left(E-\lambda^{2} A \bar{A}\right) A, \quad A\left(E-\lambda^{2} \bar{A} A\right)^{-1}=\left(E-\lambda^{2} A \bar{A}\right)^{-1} A,
$$

and

$$
\begin{aligned}
& S p\left(E-\lambda^{2} A \bar{A}\right)^{-1} A \bar{A}\left(E-\lambda^{2} A \bar{A}\right)^{-1} \\
& \quad= S p\left\{\bar{U}^{\prime}\left(E-\lambda^{2} D\right) U\right\}^{-1} \bar{U}^{\prime} D U\left\{\bar{U}^{\prime}\left(E-\lambda^{2} D\right) U\right\}^{-1} \\
& \quad= S p U^{-1}\left(E-\lambda^{2} D\right)^{-1} U \bar{U}^{\prime} D U U^{-1}\left(E-\lambda^{2} D\right)^{-1} U \\
& \quad= S p\left(E-\lambda^{2} D\right)^{-1} D\left(E-\lambda^{2} D\right)^{-1}=\sum_{i=1}^{n}\left(\frac{a_{i}}{1-\lambda^{2} \alpha_{i}^{2}}\right)^{2},
\end{aligned}
$$

where U is a unitary matrix such that $U A \bar{A} \bar{U}^{\prime}=D=\left(\begin{array}{l}\alpha_{1}^{2} \ldots \ldots .0 \\ \ldots \ldots \ldots . . \\ 0 \ldots \ldots \alpha_{n}^{2}\end{array}\right)$ is of a diagonal form, it follows that

$$
\begin{aligned}
l_{A} & =\int_{0}^{1} \sqrt{\sum_{i=1}^{n}\left(\frac{\alpha_{i}}{1-\lambda^{2} \alpha_{i}^{2}}\right)^{2}} d \lambda<\sum_{i=1}^{n} \int_{0}^{1} \frac{\alpha_{i}}{1-\lambda^{2} \alpha_{i}^{2}} d \lambda \\
& =\frac{1}{2} \log \prod_{i=1}^{n} \frac{1+\alpha_{i}}{1-\alpha_{i}} .
\end{aligned}
$$

Hence we have

$$
2 R^{*}<2 l_{A}<\log \prod_{i=1}^{n}\left(1+\alpha_{i}\right)^{2}-\log |E-\bar{A} A|, \quad R^{*}<n \log 2+\frac{1}{2} R(A)
$$

therefore $\rho<C+\frac{\alpha}{2} R(A)$, where C and α means constants. On the other hand, let M be greatest among the absoltue values of the element of $\sum_{1}, \sum_{2}, \ldots, \sum_{\nu}$. Then the elements S are not greater than $(p M)^{\rho}<C_{0} e^{\frac{a}{2} R(A) \log M p}$ in absolute value, where C_{0} means a constant.

Hence we get

$$
(M p)^{\rho}\left\|U_{3} Z+U_{4}\right\|^{-2(n+1) k}<C_{0} e^{-(n+1) k(R(A)-R(Z))+\frac{a}{2} R(A) \log M p}
$$

from the relation

$$
\left\|U_{3} Z+U_{4}\right\|^{-2(n+1) k}=e^{-(n+1) k(R(A)-R(Z))} .
$$

Now let us take k so large that $(n+1) k-2(n+1)>\frac{\alpha}{2} \log M p$. Let $s_{\mu \nu}$ be an element of S^{-1}. Then we have

$$
\left|s_{\mu \nu}\right|\left\|U_{3} Z+U_{4}\right\|^{-2 k(n+1)}<\left\|U_{3} Z+U_{4}\right\|^{-4(n+1)} \cdot{ }^{1)}
$$

Therefore the series $Z_{k}(Z)$ is absolutely and uniformly convergent in \mathfrak{A}. I express my hearty thanks to Mr. S. Iyanaga for his kind criticism.

1) Because the exponent of S^{-1} is equal to that of S.

[^0]: 1) Cf. H. Poincaré. Memoire sur les fonctions fuchsiennes. Memoire sur les fonctions zetafuchsinnes (Oeuvre Tom II.)
 2) Masao Sugawara. Über eine allgemeine Theorie der fuchssche Gruppen und Theta-Reihen. Ann. Math. 41 ; cited with S.
