118. A Remark on the Arithmetic in a Subfield.

By Keizo Asano and Tadasi Nakayama.
Mathematical Institute, Osaka Imperial University.
(Comm. by T. Takagi, m.I.A., Dec. 12, 1940.)

Let K be a (commutative) field and k be its subfield over which K has a finite degree. It is well known that if k is a quotient field of a certain integrity-domain in which the usual arithmetic ${ }^{1)}$ holds then the same is the case in the integrity-domain in K consisting of the totality of relatively integral elements. The present small remark is however concerned with the converse situation. Suppose namely K be a quotient field of an integrally closed integrity-domain \bigcirc. Does then the integrity-domain

$$
\mathfrak{v}=\mathfrak{D} \cap k
$$

in k have the usual arithmetic if we have it in $\mathfrak{\Im}$? The answer is of course negative in general. ${ }^{2)}$ So we want to obtain a condition that the usual arithmetic prevail in 0 . And, to do so we can, and shall, assume without any essential loss in generality that K / k be normal, since we know that the usual arithmetic is preserved by any finite extension.

Theorem 1. In order that $\mathfrak{v}=\mathfrak{D} \cap k$ possess the usual arithmetic it is necessary and sufficient that the intersection $\mathfrak{D}^{*}=\mathfrak{D} \cap \Im^{\prime} \cap \ldots \cap \Im^{(n-1)}$ $(n=(K: k))$ of all the conjugates (with respect to $K / k)$ of \mathfrak{S} in K have it. And, if this is the case then \mathfrak{D}^{*} is the totality of the elements in K relatively integral with respect to $\mathbf{0}$.

Theorem 2. If in particular \mathfrak{O} coincides with all its conjugates and if we have the usual arithmetic in \mathfrak{D} then we have it in \mathfrak{o} too.

We begin with a proof of this special case: First, k is the quotient field of 0 . For, if $a \in k$ then $a \alpha \in \mathfrak{D}$ for a suitable $\alpha \in \mathfrak{D}$ and so $a N(\alpha) \in \mathfrak{0}$, where $N(\alpha)$ is the norm $\alpha \alpha^{\prime} \ldots a^{(n-1)}$ of α and lies in $\mathfrak{v}=\mathfrak{D} \cap k$ since $\alpha, a^{\prime}, \ldots$ are all in \mathfrak{D}.

Let \mathfrak{a} be an (integral or fractional) d-ideal in $k . \quad a \mathfrak{o}$ has the inverse $(\mathfrak{a} \mathfrak{D})^{-1}$ and $\mathfrak{a}(\mathfrak{a} \supseteq)^{-1}=(\mathfrak{a} \supseteq)(a \supseteq)^{-1}=\mathfrak{O}$. Hence

$$
1=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\cdots+a_{r} \alpha_{r} \text { with } a_{\mu} \in \mathfrak{a}, \quad \alpha_{\mu} \in(\mathfrak{a} \Im)^{-1}
$$

and

$$
1=\prod_{i=0}^{n-1}\left(a_{1} a_{1}^{(i)}+\cdots+a_{r} a_{r}^{(i)}\right)=\sum c_{\nu_{1} \ldots \nu_{r}} a_{1}^{\nu_{1}} \ldots a_{r}^{\nu}
$$

where $c_{\nu_{1} \ldots \nu_{r}}$ are homogeneous of degree n in $a_{1}, \ldots, a_{r}, a_{1}^{\prime}, \ldots, a_{r}^{\prime}, \ldots$. Now, let \mathfrak{F} be a prime ideal in \mathfrak{D}, and let $\mathfrak{S}_{\mathfrak{B}}$ be the ring of integers for \mathfrak{F}, that is, the valuation ring for \mathfrak{B}. Then $\mathfrak{o}_{\mathfrak{B}}=\mathfrak{D}_{\mathfrak{B}} \cap k$ is the valuation ring of the valuation in k induced by \mathfrak{P}. We set $\mathfrak{a}_{\mathfrak{B}}=\mathfrak{a} 0_{\mathfrak{B}}$,

1) Unique factorization into prime ideals $=$ Group condition.
2) See an example below.
$\mathfrak{S}_{1}=\mathfrak{S o}_{\mathfrak{B}}$. Then $\mathfrak{D}_{1} \subseteq \mathfrak{S}_{\mathfrak{B}}$ and $\mathfrak{D}_{1} \cap k=\mathfrak{D}_{\mathfrak{B}} \cap k=\mathfrak{o}_{\mathfrak{B}}$. The inverse $\mathfrak{a}_{\mathfrak{B}}^{-1}$ of $\mathfrak{a}_{\mathfrak{B}}$ with respect to $\mathfrak{o}_{\mathfrak{B}}$ exists; $\mathfrak{a}_{\mathfrak{B}}^{-1} \mathfrak{a}_{\mathfrak{B}}=\mathfrak{o}_{\mathfrak{B}}$. Further

$$
(\mathfrak{a} \subseteq)^{-1} \mathfrak{o}_{\mathfrak{B}}=(\mathfrak{a} \Im)^{-1} \mathfrak{a}_{\mathfrak{B}} \mathfrak{a}_{\mathfrak{B}}^{-1}=\mathfrak{D} \mathfrak{o}_{\mathfrak{\beta}} \mathfrak{a}_{\mathfrak{B}}^{-1}=\mathfrak{a}_{\mathfrak{B}}^{-1} \mathfrak{D}_{1}
$$

and so

$$
\alpha_{\mu} \in(\mathfrak{a} \Im)^{-1} \leqq \mathfrak{a}_{\mathfrak{B}}^{-1} \mathfrak{D}_{1}, \quad a_{\mu}^{(i)} \in \mathfrak{a}_{\mathfrak{B}}^{-1} \bigcirc_{1} .
$$

Therefore

$$
c_{\nu_{1} \ldots \nu_{r}} \in\left(\mathfrak{a}_{\mathfrak{B}}^{-1} \mathfrak{D}_{1}\right)^{n}=\mathfrak{a}_{\mathfrak{B}}^{-n} \mathfrak{D}_{1} \quad \text { whence } \in \mathfrak{a}_{\mathfrak{B}}^{-n} \mathfrak{D}_{1} \cap k=\mathfrak{a}_{\mathfrak{B}}^{-n} .
$$

Since this is the case for every \mathfrak{F}, we have $c_{\nu_{1} \ldots \nu_{r}} \in \cap \mathfrak{a}_{\mathfrak{B}}^{-n}$, and thus $1 \in\left(\cap \mathfrak{a}_{\mathfrak{B}}^{-n}\right) \mathfrak{a}^{n}$. But $\mathfrak{a}_{\mathfrak{B}}^{-n} \mathfrak{a}^{n} \leqq \mathfrak{o}_{\mathfrak{B}}$ and $\left(\cap \mathfrak{a}_{\mathfrak{B}}^{-n}\right) \mathfrak{a}^{n} \leqq \mathfrak{o}_{\mathfrak{B}}=\mathfrak{0}$. \quad So $\left(\cap \mathfrak{a}_{\mathfrak{B}}^{-n}\right) \mathfrak{a}^{n}=\mathfrak{0}$ and \mathfrak{a} has an inverse. This proves our theorem 2.
A second proof: That an integrity-domain \mathfrak{D} in K has K as its quotient field and possesses the usual arithmetic is equivalent to the existence of a system $\left\{\Phi_{\sigma}\right\}$ of non-archimedian valuations Φ_{σ} in K satisfying the condition : ${ }^{1)}$

1) \mathfrak{D} is the intersection $\cap \Im_{\sigma}$ of valuation rings \Im_{σ} for Φ_{σ},
2) every Φ_{σ} is discrete,
3) given a finite number of indices, say $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}$, and given correspondingly $a_{1}, a_{2}, \ldots, a_{m} \in K$, there exists an element a in K which is, for every $i=1,2, \ldots, m$, near to a_{i} with respect to $\Phi_{\sigma_{i}}$ to any preassigned degree and which is integral for all other Φ_{σ}.

Further, in case such a system exists any non-archimedian valuation in K whose valuation ring contains \mathfrak{O} is equivalent to one (and only one) of Φ_{σ}.

Now, let k be, as before, a subfield of K over which K is finite and normal. On supposing the existence of $\left\{\Phi_{\sigma}\right\}$ in K as above, we want to derive a system of valuations in k satisfying the similar conditions. For this, we simply consider those valuations induced in k by Φ_{σ} and take representatives of the classes of mutually equivalent ones among them. Denote the system thus obtained by $\left\{\varphi_{\tau}\right\}$. It is evident that $\mathfrak{v}=\mathfrak{O} \cap k$ coincides with the intersection $\cap v_{\tau}$ of the valuation rings \mathfrak{D}_{τ} for φ_{τ}. Further, every φ_{τ} is discrete. To verify the third condition, we first assume K / k to be separable. Then every a in k is a trace of an element α in $K ; a=S(\alpha)=\alpha+\alpha^{\prime}+\cdots+\alpha^{(n-1)}$. Now, suppose φ_{τ} is induced by Φ_{σ}. A valuation conjugate to Φ_{σ} with respect to K / k is equivalent to a certain Φ, since \mathfrak{D} coincides with its conjugates. Moreover, the Φ 's conjugate to Φ_{σ} (up to equivalence) and only those divide φ_{τ}. So if an element β is close, sufficiently, to α at all those conjugate valuations then $S(\beta)=\beta+\beta^{\prime}+\cdots+\beta^{(n-1)}$ is near to a with respect to φ_{τ}. When $\varphi_{\tau_{1}}, \varphi_{\tau_{2}}, \ldots, \varphi_{\tau_{m}}$ and $a_{1}, a_{2}, \ldots, a_{m}$ are given, where $a_{i}=S\left(\alpha_{i}\right)$, we let α_{i} be simultaneously approximated by β at the Φ 's dividing $\varphi_{\tau_{i}}$. The β can be chosen to be integral for all other Φ 's. But then $b=S(\beta)$ has the desired property. Let next K / k be purely inseparable. Denote by p the characteristic of k, and let $K^{q} \leqq k$ where q is a power of p. Given $a_{1}, a_{2}, \ldots, a_{m}$, we consider the field

1) This formulation is due to E. Artin. In this connection cf. also M. Moriya, Journal of Hokkaido Imperial University (1940).

$$
K_{1}=K\left(\sqrt[V]{a_{1}}, \quad \sqrt[q]{a_{2}}, \ldots, \quad \sqrt{a_{m}}\right) \geqq K
$$

Since K_{1} / K is finite we have the usual arithmetic in K_{1} and the corresponding system of valuation consists of the extensions of Φ 's. Hence we can choose an element α in K_{1} which is close to $\sqrt[q]{a_{1}}, \sqrt[q]{a_{2}}, \ldots, \sqrt[a]{a_{m}}$ at the extensions of $\varphi_{\tau_{1}}, \varphi_{\tau_{2}}, \ldots, \varphi_{\tau_{m}}$ and which is integral at all other valuations. Then $\alpha^{q}(\in k)$ approximates a_{i} at $\varphi_{\tau_{i}}$ and is integral at other places. Finally, a general case can readily be reduced to these extreme cases.

Proof of Theorem 1. It is now easy to deduce Theorem 1. We first observe that

$$
\mathfrak{v}=\mathfrak{D} \cap k=\mathfrak{D}^{\prime} \cap k=\mathfrak{D}^{\prime \prime} \cap k \cdots \quad \text { whence } \mathfrak{v}=\mathfrak{D}^{*} \cap k .
$$

Hence if \mathfrak{S}^{*} has the usual arithmetic then so does \mathfrak{o} according to Theorem 2. Suppose conversely that \mathfrak{o} possesses the usual arithmetic. Then it satisfies in particular the maximum condition, and therefore, an element in K integral with respect to o is also integral with respect to \mathfrak{O} and thus lies in \mathfrak{O}. Similarly the same element is contained in all the conjugates $\mathfrak{D}^{(i)}$ of \mathfrak{D}, and so it is in \mathfrak{D}^{*}. But conversely every element in \mathfrak{D}^{*} is integral with respect to o , because all its conjugates are in \mathfrak{D}^{*} and the coefficients of the (normalized) irreducible equation in k satisfied by it are all in $\mathfrak{o}=\mathfrak{D}^{*} \cap k$. So \mathfrak{D}^{*} consists of the totality of the elements integral with respect to \mathfrak{o}, and therefore, it has the usual arithmetic along with o .

The additional remark in the theorem was proved at the same time.

Example that the usual arithmetic prevails in \mathfrak{D} but not in \mathfrak{o} : Let Ω be a field whose characteristic is different from 2 , and x, y be two independent variables. Put

$$
k=\Omega(x, y), \quad K=k(\sqrt{x})=\Omega(\sqrt{x}, y), \quad \Im=\Omega(\sqrt{ } \bar{x}+y)[y]
$$

where crotchets mean ring-adjunction. Then $\mathfrak{v}=\mathfrak{D} \cap k=\Omega[x, y]$. For, if $\alpha \in \mathfrak{v}$ then

$$
\alpha=F(x, y) / G(x, y)=f(\sqrt{x}, y) / g(\sqrt{ } \bar{x}+y),
$$

where $F(x, y), G(x, y) \in \Omega[x, y], f(\sqrt{x}, y) \in \Omega[\sqrt{x}, y], g(\sqrt{ } \bar{x}+y) \in \Omega[\sqrt{x}+y]$ and where F and G are without common factor in $\Omega[x, y]$ and so are f and g in $\Omega[\sqrt{x}, y]$. But then F and G have no common factor in $\Omega[\sqrt{x}, y]$ either. Thus necessarily $F=f, G=g$ and therefore $G=g$ is simply a constant in Ω. So $\alpha \in \Omega[x, y]$.

Now clearly the usual arithmetic fails to prevail in \mathbf{o}.
It is also easy to deduce the assertion from our general criterion in Theorem 1. Namely, an argument similar to the above one shows that $\mathfrak{D}^{*}=\mathfrak{O} \cap \mathfrak{D}^{\prime}=\Omega[\sqrt{x}, y] ; \mathfrak{D}^{\prime}=\Omega(-\sqrt{x}+y)[y]$ being the conjugate of $\mathfrak{\Im}$.

