2. Closure in General Lattices.

By Masahiro NAKAMURA.

Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by M. FUJIWARA, M.I.A., Jan. 13, 1941.)

1. Introduction. The concept "closure" was axiomatized by F. Riesz and Kuratowski¹⁾ on the field of sets, and Terasaka²⁾ generalized it onto abstract Boolean algebras. The object of this note is to extend it onto general lattices. Incidentally "combinations of topologies" of G. Birkhoff³⁾ are treated from more general point of view.

By "closure" we mean a transformation α on a complete lattice L into itself, which satisfies

$$\begin{bmatrix} 1.1 \end{bmatrix} \quad 1^{\circ} \quad a \leq aa, \qquad \qquad 2^{\circ} \quad (a \cup b) a = aa \cup ba, \\ 3^{\circ} \quad (aa) a = aa, \qquad \qquad 4^{\circ} \quad 0a = 0. \end{bmatrix}$$

From this definition we can easily get

(1.2)
$$1^{\circ} a \leq b$$
 implies $aa \leq ba$,
 $2^{\circ} (a \cap b) a \leq aa \cap ba$.

As usual we define closedness of a by aa=a, and denote the set of closed elements by C or C_a . Then⁴⁾

(1.3) A closure a determines a meet-complete sublattice C of L.

Proof is trivial. If a closure α determines a meet-complete sublattice C, then we denote it by $\alpha \rightarrow C$.

2. Meet-complete sublattices. Conversely, if a meet-complete sublattice C which contains 0 and 1 is given and define a transformation β on L as

(2.1)
$$a\beta = \wedge (x; x \ge a, x \in C),$$

then β satisfies evidently 1°, 3°, 4° of [1.1] and furthermore we can prove β is a join-homomorphism: by (2.1) $a\beta \cup b\beta \ge a \cup b$ implies $(a \cup b) \beta \le a\beta \cup b\beta$, and conversely $a, b \le (a \cup b)\beta$ implies $a\beta \cup b\beta \le (a \cup b)\beta$. Hence

(2.2) Any meet-complete sublattice C determines a closure β .

We denote this fact by $C \rightarrow \beta$. If $a \rightarrow C$ and $C \rightarrow \beta$, then by (2.1) $aa \ge a\beta$, conversely $a \le a\beta$ implies $aa \le a\beta a = a\beta$ (because $a \in C$), hence if we denote by Γ the set of all closures on L, and by Σ the set of all meet-complete sublattices which contain 0 and 1, then

(2.3) There exists a one-to-one correspondence between Γ and Σ .

3. Combinations of topologies. Now, let us define join and meet of two closures following G. Birkhoff's method. We assume C_{α} and

¹⁾ c. f. Kuratowski, Topologie I, Warsaw, 1933.

²⁾ Terasaka, Theorie der topologischen Verbände, Proc. 13 (1937).

³⁾ G. Birkhoff, On the combinations of topologies, Fund. Math., 26 (1936).

⁴⁾ A lattice C is called *meet-complete*, if unrestricted meet operation is defined

 C_{β} are meet-complete sublattices containing 0 and 1, and combine them by

(1) $C_{\alpha} \cap C_{\beta}$ is meant set-theoretic product, and

(2) $C_{\alpha} \cup C_{\beta}$ is a sublattice generated by C_{α} and C_{β} . Then we can evidently get

(3.1) \sum forms a lattice.

If $C_{\alpha} \rightarrow \alpha$ and $C_{\beta} \rightarrow \beta$, then we define

(1) $C_a \cap C_\beta \to a \cup \beta$, (2) $C_a \cup C_\beta \to a \cap \beta$.

From this definition, (2.3) and (3.1), we can conclude evidently (3.2) Γ is a lattice and is dual isomorphic with \sum .

When we define partially ordering by the terms of lattice operations, then we can conclude

(3.3) $\alpha \leq \beta$ if and only if $x\alpha \leq x\beta$.