97. On the Generalized Loxodromes in the Conformally Connected Manifold.

By Kentaro Yano and Yosio Mutô.
Mathematical Institute, Tokyo Imperial University. (Comm. by S. Kakeya, m.I.A., Dec. 12, 1941.)

In a previous paper ${ }^{1)}$, we have defined a conformal arc length σ on the curves in the conformally connected manifold and have proved the Frenet fomulae
(1)

The conformal arc length does not exist for the generalized circles. The most simple curves having the conformal arc length are the ones for which we have

$$
\begin{equation*}
\lambda=\stackrel{4}{\lambda}=\stackrel{5}{\lambda}=\cdots=\stackrel{n}{\lambda}=\stackrel{\infty}{\lambda}=0 . \tag{2}
\end{equation*}
$$

We shall, first, consider the properties of these curves.
§ 1. Substituting the equations (2) in the Frenet formulae (1), we have
(3) $\quad \frac{d}{d \sigma} \underset{(0)}{A}=\underset{(1)}{A}, \quad \frac{d}{d \sigma} \underset{(1)}{A}=\underset{(2)}{A}, \quad \underset{d \sigma}{d \sigma} \underset{(2)}{A}=\underset{(3)}{A}, \quad \frac{d}{d \sigma} \underset{(3)}{A}=\underset{(0)}{A}$,
which shows that, if we develop the curve on the tangent conformal space at $\underset{(0)}{A}$, we shall obtain a curve lying always on a two-dimensional sphere determined by $\underset{(0)}{A} \underset{(1)}{A}, \underset{(2)}{A}$ and $\underset{(3)}{A}$.

Considering always the development of the curve on the tangent conformal space at a fixed point of the conformally connected manifold, we can treat such curves as if they were on a two-dimensional flat conformal space.

1) K. Yano and Y. Mutô: On the conformal arc length, Proc. 17 (1941), 318-322.

Now, putting
(4)

$$
\left\{\begin{array}{l}
P=\underset{(0)}{A}+\underset{(1)}{A}+\underset{(2)}{A}+\underset{(3)}{A}, \\
Q=\underset{(0)}{A-\underset{(1)}{A}+\underset{(2)}{A}-\underset{(3)}{A},}
\end{array}\right.
$$

we have

$$
\begin{equation*}
\frac{d}{d \sigma} P=P \quad \text { and } \quad \frac{d}{d \sigma} Q=-Q \tag{5}
\end{equation*}
$$

consequently, we can see that P and Q are two fixed points.
The circle passing through the three points $\underset{(0)}{A}, P$ and Q being $\underset{\text { (1) }}{A}-\underset{\text { (3) }}{A}$, the angle θ between the curve and $\underset{\text { (1) }}{A}-\underset{\text { (3) }}{A}$ is given by

$$
\sin \theta=\frac{\underset{(1)}{A\left(A-A_{(3)}\right.}}{\sqrt{A A_{(1)(1)}^{A}} \sqrt{\left(A-A_{(3)}^{A}\right)(A-A)}}=\frac{1}{\sqrt{(3)}}
$$

from which we find $\theta=\frac{\pi}{4}$. Thus we have the
Theorem I. The curve whose all conformal curvatures $\lambda, \frac{4}{\lambda}, \ldots$, $\stackrel{n}{\lambda}, \lambda$ vanish cuts the circles passing through two fixed points always by the fixed angle $\frac{\pi}{4}$, consequently, it is a loxodrome.

The four points $\underset{(0)}{A}, \underset{(2)}{A}, P$ and Q lying on the circle $\underset{(1)}{A}-\underset{(3)}{A}$, the points $\underset{(0)}{A}$ and $\underset{\text { (2) }}{A}$ are harmonically separated by the points P and Q on this circle.

We shall now find the differential equations of these generalized loxodromes.

Differentiating the equation

$$
\begin{equation*}
\underset{(0)}{A}=\left(\frac{d \sigma}{d s}\right) A_{0} \tag{6}
\end{equation*}
$$

and making use of the formulae

$$
\begin{cases}d A_{0}= & d u^{i} A_{i} \\ d A_{j} & =\Pi_{j k}^{0} d u^{k} A_{0}+\Pi_{j k}^{i} d u^{k} A_{i}+\Pi_{j k}^{\infty} d u^{k} A_{\infty} \\ d A_{\infty} & =\quad \Pi_{\infty k}^{i} d u^{k} A_{i}\end{cases}
$$

which define the conformal connection, we find successively

$$
\begin{equation*}
\underset{\text { (1) }}{A}=\frac{\frac{d^{2} \sigma}{d s^{2}}}{\frac{d \sigma}{d s}} A_{0}+\frac{d u^{i}}{d s} A_{i} \tag{7}
\end{equation*}
$$

No. 10.] On the Generalized Loxodromes in the Conformally Connected Manifold. 457

$$
\text { (2) } \begin{align*}
& A=\left[\frac{\frac{d^{3} \sigma}{d s^{3}}}{\left(\frac{d \sigma}{d s}\right)^{2}}-\frac{\left(\frac{d^{2} \sigma}{d s^{2}}\right)^{2}}{\left(\frac{d \sigma}{d s}\right)^{3}}+\frac{I I_{j k}^{0} \frac{d u^{j}}{d s} \frac{d u^{k}}{d s}}{\frac{d \sigma}{d s}}\right] A_{0} \tag{8}\\
&+\left[\frac{\frac{\partial^{2} u^{i}}{\partial s^{2}}}{\frac{d \sigma}{d s}}+\frac{d^{2} \sigma}{d s^{2}} \frac{d u^{i}}{\left(\frac{d \sigma}{d s}\right)^{2}}\right] A_{i}+\frac{1}{\frac{d \sigma}{d s}} A_{\infty},
\end{align*}
$$

(9)

$$
\begin{aligned}
& \underset{(3)}{A}=\frac{1}{\left(\frac{d \sigma}{d s}\right)^{2}}\left[g_{j k} \frac{\delta^{3} u^{j}}{\delta s^{3}} \frac{\delta^{2} u^{k}}{\delta s^{2}}+\Pi I_{j k}^{0} \frac{\delta^{2} u^{j}}{\delta s^{2}} \frac{d u^{k}}{d s}\right] A_{0} \\
& +\frac{1}{\left(\frac{d \sigma}{d s}\right)^{2}}\left[\frac{\delta^{3} u^{i}}{\delta s^{3}}+\frac{d u^{i}}{d s} g_{j k} \frac{\delta^{2} u^{j}}{\delta s^{2}} \frac{\delta^{2} u^{k}}{\delta s^{2}}\right. \\
& \left.-\frac{d u^{i}}{d s} \Pi_{j k}^{0} \frac{d u^{j}}{d s} \frac{d u^{k}}{d s}+\Pi_{\infty<k}^{i} \frac{d u^{k}}{d s}\right] A_{i}{ }^{*)},
\end{aligned}
$$

where we have denoted by $\delta / \delta \mathrm{s}$ the covariant differentiation along the curve with respect to the Christoffel symbols $I_{j k}^{i}=\left\{{ }_{j k}^{i}\right\}$.

Putting

$$
\begin{equation*}
V^{i}=\frac{\delta^{3} u^{i}}{\partial s^{3}}+\frac{d u^{i}}{d s} g_{j k} \frac{\partial^{2} u^{j}}{\partial s^{2}} \frac{\partial^{2} u^{k}}{\partial s^{2}}-\frac{d u^{i}}{d s} \Pi_{j k}^{0} \frac{d u^{j}}{d s} \frac{d u^{k}}{d s}+\Pi_{\omega c k}^{i} \frac{d u^{k}}{d s}, \tag{10}
\end{equation*}
$$

we have, from (9),

$$
\begin{equation*}
{ }_{(3)}^{A}=\frac{1}{\left(\frac{d \sigma}{d s}\right)^{2}}\left[g_{j l} V^{j} \frac{\partial^{2} v^{t}}{\partial s^{2}} A_{0}+V^{i} A_{i}\right] . \tag{11}
\end{equation*}
$$

Differentiating once more the equation (11) along the curve, we have, in consequence of (3),

$$
\begin{align*}
\frac{d}{d \sigma} \underset{(3)}{A}= & =\left[-\frac{2 \frac{d^{2} \sigma}{d s^{2}}}{\left(\frac{d \sigma}{d s}\right)^{4}} g_{j k} V^{j} \frac{\delta^{2} u^{k}}{\delta s^{2}}\right. \tag{12}\\
& \left.+\frac{1}{\left(\frac{d \sigma}{d s}\right)^{3}}\left(g_{j k} \frac{\delta V^{j}}{\delta s} \frac{\delta^{2} u^{k}}{\delta s^{2}}+g_{j k} V^{j} \frac{\delta^{3} u^{k}}{\delta s^{3}}+\Pi_{j k}^{0} V^{j} \frac{d u^{k}}{d s}\right)\right] A_{0} \\
& +\left[-\frac{2 \frac{d^{2} \sigma}{d s^{2}}}{\left(\frac{d \sigma}{d s}\right)^{4}} V^{i}+\frac{1}{\left(\frac{d \sigma}{d s}\right)^{3}}\left(g_{j k} V^{j} \frac{\delta^{2} u^{k}}{\delta s^{2}} \frac{d u^{i}}{d s}+\frac{\delta V^{i}}{\delta s}\right)\right] A_{i}
\end{align*}
$$

*) We have used the relations $0=\lambda=-\{t, \sigma\}=-[\{t, s\}-\{\sigma, s\}]\left(\frac{d s}{d \sigma}\right)^{2}$ and $\{\sigma, s\}=\{t, s\}=\frac{1}{2} g_{j l} \frac{\partial^{2} u^{j}}{\delta s^{2}} \frac{\delta^{2} u^{k}}{\delta s^{2}}-\Pi_{j k}^{0} \frac{d u^{j}}{d s} \frac{d u^{k}}{d s}$ for the reduction.
from which we obtain
(13) $g_{j k} \frac{\delta V^{j}}{\delta s} \frac{\delta^{2} u^{k}}{\delta s^{2}}+g_{j k} V^{j} \frac{\partial^{3} u^{k}}{\delta s^{3}}+I I_{j k}^{0} V^{j} \frac{d u^{k}}{d s}-\frac{2 \frac{d^{2} \sigma}{d s^{2}}}{\frac{d \sigma}{d s}} g_{j k} V^{j} \frac{\delta^{2} u^{k}}{\delta s^{2}}=\left(\frac{d \sigma}{d s}\right)^{4}$ and

$$
\begin{equation*}
\frac{\delta V^{i}}{\delta s}+g_{j k} V^{j} \frac{\delta^{2} u^{k}}{\delta s^{2}} \frac{d u^{i}}{d s}=\frac{2 \frac{d^{2} \sigma}{d s^{2}}}{\frac{d \sigma}{d s}} V^{i} \tag{14}
\end{equation*}
$$

But, as we can see from (10), we have

$$
g_{j l} V^{j} \frac{d u^{k}}{d s}=0
$$

which gives, on covariant differentiation,

$$
\begin{equation*}
g_{j k} V^{j} \frac{\delta^{2} u^{k}}{\delta s^{2}}=-g_{j k} \frac{\delta V^{j}}{\delta s} \frac{d u^{k}}{d s} . \tag{15}
\end{equation*}
$$

Substituting these equations in (14), we find

$$
\begin{equation*}
\frac{\delta V^{i}}{\delta s}-\frac{d u^{i}}{d s} g_{j k} \frac{\delta V^{j}}{\delta s} \frac{d u^{l}}{d s}=\frac{2 \frac{d^{2} \sigma}{d s^{2}}}{\frac{d \sigma}{d s}} V^{i} \tag{16}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{D v^{i}}{D s}=0 \tag{17}
\end{equation*}
$$

where $D / D s$ is a conformal covariant derivative defined in a previous paper ${ }^{1)}$, and

$$
\begin{equation*}
v^{i}=\frac{V^{i}}{\left(\frac{d \sigma}{d s}\right)^{2}} \tag{18}
\end{equation*}
$$

σ being defined by

$$
\begin{equation*}
\left(\frac{d \sigma}{d s}\right)^{4}=g_{j k} V^{j} V^{k} \tag{19}
\end{equation*}
$$

If the equations (16) hold good, the left-hand member of (13) will be written as

$$
\frac{2 \frac{d^{2} \sigma}{d s^{2}}}{\frac{d \sigma}{d s}} g_{j k} V^{j} \frac{\delta^{2} u^{k}}{\delta s^{2}}+g_{j k} V^{j} V^{k}-\frac{2 \frac{d^{2} \sigma}{d s^{2}}}{\frac{d \sigma}{d s}} g_{j k} V^{j} \frac{\delta^{2} u^{k}}{\delta s^{2}}
$$

then, in consequence of (19), the equations (13) are automatically satisfied.

1) K. Yano: Sur la connexion de Weyl-Hlavatý et ses applications à la géométrie conforme, Proc. Physico-Math. Soc. Japan. Vol. 22 (1940), 595-621.

No. 10.] On the Generalized Loxodromes in the Conformally Connected Manifold. 459
So that, (17) are the differential equations of the generalized loxodromes to be obtained.
§2. Next, we shall consider the curves for which we have

$$
\begin{equation*}
\lambda=\text { const. } \quad \stackrel{4}{\lambda}=\stackrel{5}{\lambda}=\cdots=\stackrel{n}{\lambda}=\stackrel{\infty}{\lambda}=0 . \tag{20}
\end{equation*}
$$

For these curves, we have, from (1),

$$
\begin{equation*}
\underset{d}{d \sigma} \underset{(0)}{A}=\underset{(1)}{A}, \quad \frac{d}{d \sigma} \underset{(1)}{A}=\lambda A_{(0)}+\underset{(2)}{A}, \quad-\frac{d}{d \sigma} \underset{(2)}{A}=\lambda \underset{(1)}{A}+\underset{(3)}{A}, \quad-\frac{d}{d \sigma} \underset{(3)}{A}=\underset{(0)}{A}, \tag{21}
\end{equation*}
$$

consequently, we can, as in $\S 1$, treat the curves as if they were in a two-dimensional conformal space. In order that the circle

$$
\begin{equation*}
\alpha_{0} A+\alpha_{1} A+\alpha_{2} A+\alpha_{(2)} A \tag{22}
\end{equation*}
$$

where $\alpha_{0}, \alpha_{1}, \alpha_{2}$ and α_{3} are constants, be a fixed circle, the constants α_{0}, α_{1}, α_{2} and α_{3} must satisfy the equations

$$
\begin{equation*}
\alpha_{1} \lambda+\alpha_{3}=\rho \alpha_{0}, \quad \alpha_{2} \lambda+\alpha_{0}=\rho \alpha_{1}, \quad \alpha_{1}=\rho \alpha_{2}, \quad \alpha_{2}=\rho \alpha_{3} \tag{23}
\end{equation*}
$$

where ρ is a proportional constant.
Eliminating $\alpha_{0}, \alpha_{1}, \alpha_{2}$ and α_{3} from these equations, we have

$$
\begin{equation*}
\rho^{4}-2 \lambda \rho^{2}-1=0 \tag{24}
\end{equation*}
$$

which gives two real values of ρ

$$
\left\{\begin{array}{l}
\rho=+\sqrt{\lambda+\sqrt{\lambda^{2}+1}}, \tag{25}\\
\rho^{\prime}=-\sqrt{\lambda+\sqrt{\lambda^{2}+1}}
\end{array}\right.
$$

Corresponding to these values of ρ, we have

$$
\alpha_{0}: \alpha_{1}: \alpha_{2}: \alpha_{3}=\sqrt{\lambda^{2}+1} \cdot \rho: \rho^{2}: \rho: 1,
$$

and

$$
\alpha_{0}: \alpha_{1}: \alpha_{2}: \alpha_{3}=\sqrt{\lambda^{2}+1} \cdot \rho^{\prime}: \rho^{\prime 2}: \rho^{\prime}: 1=-\sqrt{\lambda^{2}+1} \cdot \rho: \rho^{2}:-\rho: 1 .
$$

Consequently, the two circles defined by

$$
\left\{\begin{array}{l}
P=+\sqrt{\lambda^{2}+1} \underset{(0)}{\rho A}+\rho_{(1)}^{2}+\rho_{(2)}^{A}+\underset{(3)}{A}, \tag{26}\\
Q=-\sqrt{\lambda^{2}+1} \underset{(0)}{A+}+\underset{(1)}{\rho^{2} A}-\underset{(2)}{\rho_{(3)}}+\underset{(3)}{A},
\end{array}\right.
$$

are both fixed circles. Moreover, we can easily verify that

$$
\begin{equation*}
P \cdot P=0 \quad \text { and } Q \cdot Q=0, \tag{27}
\end{equation*}
$$

that is to say that the P and Q are both point-circles.
The circle passing through the three points $\underset{(0)}{A}, P$ and Q being $\underset{(1)}{A}-\rho_{(3)}^{2}$, the angle $\theta(0 \leqq \theta \leqq \pi)$ at $\underset{(0)}{A}$ between the curve and this circle is given by

$$
\begin{align*}
\sin \theta & =\frac{\underset{(1)}{\left.A(1)-\rho_{(1)}^{A}\right)}}{\sqrt{{\underset{(1)}{A}(1)}_{A}^{\left(\underset{(1)}{\left(A-\rho^{2} A\right)} \underset{(3)}{\left.A-\rho_{(1)}^{2} A\right)}\right.}}=\frac{1}{\sqrt{\rho^{4}+1}}} \tag{28}\\
& =\frac{1}{\sqrt{2\left(\lambda^{2}+1\right)+2 \lambda \sqrt{\lambda^{2}+1}}}
\end{align*}
$$

Putting

$$
\begin{equation*}
\lambda=\tan \varphi \quad\left(-\frac{\pi}{2} \leqq \varphi \leqq \frac{\pi}{2}\right) \tag{29}
\end{equation*}
$$

we have, from (28),

$$
\sin \theta=\frac{1}{\sqrt{2 \sec ^{2} \varphi+2 \tan \varphi \sec \varphi}}=\frac{1}{\sqrt{2}}\left(\cos \frac{\varphi}{2}-\sin \frac{\varphi}{2}\right)=\sin \left(\frac{\pi}{4}-\frac{\varphi}{2}\right)
$$

hence,

$$
\begin{equation*}
\theta=\frac{\pi}{4}-\frac{\varphi}{2} . \tag{29}
\end{equation*}
$$

Then, we have the
Theorem II. The curve whose conformal curvature $\lambda=$ const. and $\stackrel{4}{\lambda}=\stackrel{\hbar}{\lambda}=\cdots=\stackrel{\infty}{\lambda}=0$, cuts all the circles passing through two fixed points by the fixed angle $\frac{\pi}{4}-\frac{\varphi}{2}$ where $\tan \varphi=\lambda$, consequently it is a loxodrome.

The four points $\underset{(0)}{A}, \underset{(2)}{A}, P$ and Q lying on the circle $\underset{\text { (1) }}{A}-\rho_{(3)}^{2}$, the points $\underset{(0)}{A}$ and $\underset{(2)}{A}$ are harmonically separated by the points P and Q on this circle.

