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13. An Abstract Integral, VII.
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Mathematical Institute, Tohoku Imperial University, Sendai.

(Comm. by M. FUJIWARA, M.I.A., Feb. 12, 1942.)

ltrodction. This is the preliminary report of analysis of func-
tions with range in a complete vector lattice. This subject was firstly
studied by S. Bochner>. 1 contains the definitions and theorems of
measurable functions. The definition of the measurability is that of
S. Bochner. 2 is the integration theory. Integral is defined by the
idea of McNeille. 3 contains some remarks on integrals. Some
related integrals are introduced and a modified integral is shown to
coincide with the Bochner integrala) when the range is the Banach
lattice. 4 is the Fourier series theory. Here the Bessel inequality
is proved. This is not true for the Bochner integral with range in
the Banach space. This point is a reason why we develop the analysis
of functions with range in a lattice in stead of a Banach space. 5
is a generalization of 1 and 2. The content of 5 shows that the
theory of integral and that of measure can be placed under a general
theory. In the ordinary theory one of those theories is derived from
the other>.

1. Measurable functian).
[1.1] I is a fixed finite interval in an Euclidean space.
[1.2] V is a fixed a-complete vector lattice.
We will consider functions with domain I and with range in V

and will denote them by f(x) and g(x), etc. Such functions are sup-
posed to be defined uniquely in a full set of I and need not be defined
in the complementary null set.

[1.3] f(x) is called a simple function if there are an integer n, a
set of real numbers (a, a, ..., a) and a set of disjoint measurable sets
(E, E, ..., E.) such that

I=E, f(x)=a in E (k=l, 2, ..., n).

[1.4] f(x)is called to be measurable if there is a sequence of
simple functions f,(x)(n=l, 2, ...) such that f,(x) tends to f(x) relative
uniformly almost everywhere, that is, there are sequences of functions
L(x), g,(x)(n= 1, 2, ...) such that 2(x) tends to zero monotonously (by the
order topology) almost everywhere as n-- o and If(x)-f(x) 2(x)g(x)
almost everywhere. We write f,(x)-f(x) (r. u.) a.e. or f(x)=(r, u)-
]imf.(x), a.e.

If f(x) is measurable, then we write f(x)e M.

1) S. Bochner, Proc. Nat. Academy, (1939).
2) McNeille, ibidem (1941).
3) S. Bochner, Fund. Math., 20 (1930).
4) cf. S. Izumi, An Abstract integral IV, Proc. Imp. Acad. of Japan, (1941).
5) ], and ( ) denote definition, theorem and axiom respectively.



54 S. IzuL [Vol. 18,

We can prove easily that
(1.5) f(x) e M implies If(x) e M.
(1.6) Linear sum of measurable functions is also measurable.
Further we introduce the assumption
(1.7} For any sequence (u,; k= 1, 2, ...) in V, there is a sequence

of real numbers (2; k=l, 2, ...) such that ,u converges relative
k=l

uniformly. We denote such sum by (r. u.)-, 2aua.
Then we can prove that
(1.8) If f(x) e M(n= 1, 2, ...) and f(x)--,f(x) (r. u.) a.e., then

f(x)eM.
2. Lebesgue integral.

[2.1] If f(x)is a simple function in [1.3], then the integral of

f(x) is defined by lEla and is denoted by f(x)dx.
k--1

[2.2] Let f(x) be e M and non-negative, f(x) is called to be
integrable if there is a sequence of simple functions (u(x) n=l, 2, ...)

such that (1) u,(x) 0(n= 1, 2, ...), (2) f(x)=(r, u.) u(x), a.e. and

(3) (r. u.) , u(x)dx exists.

[2.3] If f(x) 0 and is integrable, then we define the integral of

f(x) by (r. u.), u(x)dx and denote it by f(x) dx.

Then we can prove that
(2.4) Let f,(x)(n= 1, 2, ...) be 0 and integrable. If f(x)=

(r. u.) f,jx), a. e. and (r. u.) f()d exists, then f() is integrable
’=I n-1

and f()dx=(r.u.)Y, f,J)d.
[2.5] Let f()e M, then f() is called to be integrable if f+(x) and

f-(x) are integrable. In this case we write f(x)e L.
[2.6] If f(x)eL, then the integral of f(x) is defined by

If/(x)dx-lf-(.)dx and is denoted by If(x)dx.
We can easily prove that
(2.7) L is a linear space.
(2.8) f(x) e L implies f(x) eL.
Further we can prove the convergence theorems of Fatou and

Lebesgue
(2.9) If f(x)(n= 1, 2, ...) are 0 and e L, and f(x) f,+(x), then

u.)-limf(x)dx=(r, u.)-lim If(x)dx, provided that the latter limit

exists.
(2.10) If f(x)(n= 1, 2, ...) are e L and tend to f(x) relative uni-

formly almost everywhere, further there is a function g(x)e L such as

If(x) l g(x)(n- 1, 2, ...), then f(x)e L and (r. u.)-lim f(x)dx=f()d.
3. Remarks.

1. In the definition of the Lebesgue integral we can drop the
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notion of measurability as McNeille says. We can also define the in-
tegral directly for general functions.

2 In the above definitions and theorems, we can replace relative uni-
form convergence by relative uniform star convergence. "(u n 1, 2, ...)
is relative uniformly star convergent" means that any subsequence (u)
of (u)contains a relatively uniform convergent subsequence. Using
this convergence, we can define another integral which we call (,)-
integral. (*)-integral is also a Lebesgue integral. If V is the Banach lattice,
then the relative uniform star convergence becomes the norm convergence.
And then the (*)-integral becomes the Bochner integral. (,)-integral
has the advantage that the case V=(S), set of all measurable functions,
is contained.

3. In the definitions of integral the concept of "absolute con-

vergence" is used. That is, u(z) is absolutely convergent when

lu(x) converges. If this notion is replaced by the different ones,

then we get different integrals. For example by unconditional con-
vergence and Moore-Smith convergence. ",u converges uncondi-
tionally" means that for every rearrangement (u,) of (u) J u, con-
verges in the relative uniform sense or relative uniform star sense
and "]u converges in the Moore-Smith sense" means that if a is
a finite subset of integers then _, (u n e a) converges in the Moore-
Smith sense.

4. Fourier series.
[4.1] Let I be (0,2 7).

(4.2) If f(x) L, then there exist 1If(x)dx’ 1__ f(x) cos nx dx and

1__ f(x) sin nx dx (n 1, 2,...). We call them Fourier coefficients of f(x)

and denote them by ao, a, b(n-- 1, 2, ...).

[4.3J We call the series a__0_/ j (a, cos nx+ b, sin nx) as Fourier

series of f(x) and write f(x). - /

_
(a, cos nx-I- b, sin nx) whose con-

vergence is indeferent.
[4.4 We denote a fixed element :> 0 in V by 1 and 1 by .
[4.5Je) If ceV, then we put c=sup(2c-2; _co<2<:o)

provided that the right hand side term exists.
Then we can prove that
(4.6) If f(x)L and f(x) exists almost everywhere, then there

exist a, a2, b2(n-1, 2,...).
Bessel’s inequality holds, that is,
(4.7) If f2(x) exists almost everywhere and f2(x) L, then we have

4 nfffil 7/"

6) cf. F. Riesz, Acta de Szeged, 1941.
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[4.8] If/2(x) exists almost everywhere and (x) L, we denote
f()eL.

[4.9] If f(x)-f(Y)l A I-y for all , y in /, then we denote

f()eLip. And if ,lf(x)-f(+)l is bounded for any partition

(x, ., ..., ) of L then we write f(x) e BV.
Then we can prove the following theorems.

(4.10) If f()eL and eLip for a> 1__ then _,(lal+lbl)
2

converges.
(4.11) If f(x) e L, f(x) e BV and f(x) e Lip for a>0, then, (1 a + b l) converges.

(4.12) If f(z) is continuous, f(O)=f(2=) and Fourier coefficients
of f(x) are all non-negative, then the Fourier series of f() converges
relative uniformly.. Generalization.

In the above theory we can drop the function-concept.
[5.1] V and V are a-complete vector lattices.
[5.2] F is a subspace of V such that there is a function s(u)

with domain F and with range in V, satisfying the conditions of the
Riemann type.

[5.3] If fe V, f___> 0, then f is integrable provided that there is
a sequence (u= n=l, 2, ...) in F such that (1) u >0(n=l, 2, ...), (2)

f= (r. u.) :3u (or (0.) , u) and (3) s(u) converges relative uniformly.
n---1 n-1

[5.4] The integral of such function f(x) is defined by (r. u.) s(u)

and is denoted by _If.
Thus proceeding we can develop the integration theory inde-

pendent of function-concept. This theory contains theory of measure
as a particular case. For, if we suppose that the theory of null sets
is established which is quitely elementary as F. Riesz emphasizes, and
we take F as the class of closed sets, then we get the measure theory.

In the ordinary theory, integration theory is founded on the measure
theory or this is derived from that. But the above theory contains
both simultaneously.


