29. On the Behaviour of an Inverse Function of a Meromorphic Function at its Transcendental Singular Point, III.

By Masatsugu TsuJi.
Mathematical Institute, Tokyo Imperial University.

(Comm. by T. Yosie, m.I.A., March 12, 1942.)

1. Nevanlinna's fundamental theorems.

Let $w=w(z)=f(z)$ be a meromorphic function for $|z|<\infty$ and $z=$ $\varphi(w)$ be its inverse function. Let K be the Riemann sphere of diameter 1 , which touches the w-plane at $w=0$ and $[a, b]=\frac{|a-b|}{\sqrt{\left(1+|a|^{2}\right)\left(1+|b|^{2}\right)}}$.

A δ-neighbourhood U of w_{0} is the connected part of the Riemann surface F of $\varphi(w)$, which lies in $\left[w, w_{0}\right]<\delta$ and has w_{0} as an inner point or as a boundary point. Let U correspond to Δ on the z-plane, then $\left[f(z), w_{0}\right]<\delta$ in Δ and $\left[f(z), w_{0}\right]=\delta$ on the boundary of Δ. We assume that Δ extends to infinity. Let z_{0} be a point on the z-plane and Δ_{r}, θ_{r} be the common part of Δ and $\left|z-z_{0}\right| \leqq r$ and $\left|z-z_{0}\right|=r$ respectively. We put $A(r, w ; \Delta)=$ the area on K, which is covered by $w=f(z)$, when z varies in $\Delta_{r}, S(r, w ; \Delta)=\frac{A(r, w ; \Delta)}{\pi \delta^{2}}$, where $\pi \delta^{2}$ is the area of $\left[w, w_{0}\right] \leqq \delta$ on $K, n(r, a, w ; \Delta)=$ the number of zero points of $f(z)-a$ in Δ_{r}, where $\left[a, w_{0}\right]<\delta$.

$$
\begin{gathered}
N(r, a, w ; \Delta)=\int_{r_{0}}^{r} \frac{n(r, a, w ; \Delta)}{r} d r \\
m(r, a, w ; \Delta)=\frac{1}{2 \pi} \int_{\theta_{r}} \log \frac{1}{\left[w\left(r e^{i \varphi}\right), a\right]} d \varphi \\
T(r, a, w ; \Delta)=N(r, a, w ; \Delta)+m(r, a, w ; \Delta),
\end{gathered}
$$

$L(r)=$ the total length of the curve on K, which corresponds to θ_{r}. Then we have the following theorem ${ }^{1)}$, which corresponds to Nevanlinna's first fundamental theorem.

Theorem I. $\quad T(r, a, w ; \Delta)=T(r, w ; \Delta)+O\left(\int_{r_{0}}^{r} \frac{L(r)}{r} d r\right)$,
where

$$
T(r, w ; \Delta)=\int_{r_{0}}^{r} \frac{S(r, w ; \Delta)}{r} d r
$$

We will call $T(r, w ; \Delta)$ the characteristic function of $f(z)$ in Δ and

[^0]$\varlimsup_{r \rightarrow \infty} \frac{\log T(r, w ; \Delta)}{\log r}=\rho$ the order of $f(z)$ in Δ. We will first prove the following theorem.

Theorem II. Let $U(w)$ be a linear transformation, which makes $\left[w, w_{0}\right]<\delta$ invariant, then $S(r, w ; \Delta)-S(r, U(w) ; \Delta)=O(L(r))$.

Proof. Let I_{r}^{\prime} be the whole boundary of Δ_{r} and $\Gamma_{r}=\theta_{r}+\gamma_{r}$ and a, b be any two points in $\left[w, w_{0}\right] \leqq \delta_{1}<\delta$, then

$$
\begin{align*}
& \frac{1}{2 \pi} \int_{\theta_{r}} \frac{d}{d r} \log \frac{[w, b]}{[w, a]} d \varphi=\frac{1}{2 \pi} \int_{\theta_{r}} \frac{d}{d r} \log \frac{|w-b|}{|w-a|} d \varphi \\
& \quad=\frac{1}{2 \pi r} \int_{\Gamma_{r}} d \arg \frac{w-b}{w-a}-\frac{1}{2 \pi r} \int_{r_{r}} d \arg \frac{w-b}{w-a} \\
& \quad=\frac{n(r, b, w ; \Delta)-n(r, a, w ; \Delta)}{r}-\frac{1}{2 \pi r} \int_{r_{r}} d \arg \begin{array}{l}
w-b \\
w-a
\end{array} . \tag{1}
\end{align*}
$$

Since a, b, lie in $\left[w, w_{0}\right] \leqq \delta_{1}$, we have easily

$$
\left|\frac{1}{2 \pi r} \int_{r_{r}} d \arg \frac{w-b}{w-a}\right| \leqq K\left(\delta_{1}\right) \frac{L(r)}{r},
$$

where $K\left(\delta_{1}\right)$ depends on δ_{1} only. Hence

$$
\begin{align*}
I & =\frac{n(r, a, w ; \Delta)}{r}+\frac{1}{2 \pi} \int_{\theta_{r}} \frac{d}{d r} \log \frac{1}{[w, a]} d \varphi \\
& =\frac{n(r, b, w ; \Delta)}{r}+\frac{1}{2 \pi} \int_{\theta_{r}} \frac{d}{d r} \log \frac{1}{[w, b]} d \varphi+O\left(\frac{L(r)}{r}\right) \tag{2}
\end{align*}
$$

Let $d \omega(b)$ the surface element on K at b, then since $\pi \delta_{1}^{2}$ is the area of $\left[w, w_{0}\right] \leqq \delta_{1}$, taking the integral mean over $\left[w, w_{0}\right] \leqq \delta_{1}$, we have

$$
\begin{align*}
I=\frac{S_{1}(r, w ; \Delta)}{r} & +\frac{1}{2 \pi^{2} \delta_{1}^{2}} \int_{\theta_{r}} d \varphi \int_{\left[b, w_{0}\right] \leq \delta_{1}} \frac{d}{d r} \log \frac{1}{[w, b]} d \omega(b) \\
& +O\left(\frac{L(r)}{r}\right) \tag{3}
\end{align*}
$$

where $S_{1}(r, w ; \Delta)=\frac{A_{1}(r, w ; \Delta)}{\pi \delta_{1}^{2}}, A_{1}(r, w ; \Delta)$ being the area on K over $\left[w, w_{0}\right] \leqq \delta_{1}$, which is covered by $w=f(z)$, when z varies in Δ_{r}. By Ahlfors' theorem,

$$
\begin{equation*}
S(r, w ; \Delta)-S_{1}(r, w ; \Delta)=O(L(r)) \tag{4}
\end{equation*}
$$

so that

$$
\begin{align*}
& \frac{n(r, a, w ; \Delta)}{r}+\frac{1}{2 \pi} \int_{\theta_{r}} \frac{d}{d r} \log \frac{1}{[w, a]} d \varphi \\
& =\frac{S(r, w ; \Delta)}{r}+\frac{1}{2 \pi^{2} \delta_{1}^{2}} \int_{\theta_{r}} d \varphi \int_{\left[b, w_{0}\right] \leq \delta_{1}} \frac{d}{d r} \log \frac{1}{[w, b]} d \omega(b) \\
& \tag{5}\\
& \quad+O\left(\frac{L(r)}{r}\right)
\end{align*}
$$

[Vol. 18,
We have a similar expression for $U(w)$. Since $n(r, a, w ; \Delta)=$ $n(r, U(a), U(w) ; \Delta)$, we have

$$
\begin{align*}
& \frac{1}{2 \pi} \int_{\theta_{r}} \frac{d}{d r} \log \frac{[U(w), U(a)]}{[w, a]} d \varphi=\frac{S(r, w ; \Delta)-S(r, U(w) ; \Delta)}{r} \\
& \quad+\frac{1}{2 \pi^{2} \delta_{1}^{2}} \int_{\theta_{r}} d \varphi \int_{\left[b, w_{n}\right] \leq \delta_{1}} \frac{d}{d r} \log \frac{[U(w), b]}{[w, b]} d \omega(b)+O\left(\frac{L(r)}{r}\right) . \tag{6}
\end{align*}
$$

By means of Dinghas' theorem ${ }^{1)}$, we can prove, if $\left[b, w_{0}\right] \leqq \delta_{1}<\delta$,

$$
\begin{aligned}
& \left|\frac{d}{d r} \log \frac{[U(w), U(a)]}{[w, a]}\right| \leqq K \frac{\left|w^{\prime}\right|}{1+\mid w^{2}}, \\
& \left|\frac{d}{d r} \log \frac{[U(w), b]}{[w, b]}\right| \leqq K \frac{\left|w^{\prime}\right|}{1+|w|^{2}}
\end{aligned}
$$

where K is a constant. Since $L(r)=r \int_{\theta_{r}} \frac{\left|w^{\prime}\right|}{1+|w|^{2}} d \varphi$, we have

$$
S(r, w ; \Delta)-S(r, U(w) ; \Delta)=O(L(r)) . \quad \text { q. e.d. }
$$

Proof of Theorem I. Let θ_{r} consist of circular arcs whose end points are $r e^{i \theta_{1}}, r e^{i \theta_{2}}$ and let $\theta(r)=\sum\left(\theta_{2}(r)-\theta_{1}(r)\right)$. We put $w_{1}=w\left(r e^{i \theta_{1}}\right)$, $w_{2}=w\left(r e^{i \theta_{2}}\right)$, then $\left[w_{1}, w_{0}\right]=\left[w_{2}, w_{0}\right]=\delta$. Let a be a point in $\left[w, w_{0}\right] \leqq$ $\delta_{1}<\delta$, then by (1),

$$
\begin{aligned}
& \frac{d}{d r} m\left(r, w_{0}, w ; \Delta\right)-\frac{d}{d r} m(r, a, w ; \Delta) \\
& \quad=\frac{1}{2 \pi} \sum\left(\log \frac{\left[w_{2}, a\right]}{\left[w_{2}, w_{0}\right]} \frac{d \theta_{2}}{d r}-\log \frac{\left[w_{1}, a\right]}{\left[w_{1}, w_{0}\right]} \frac{d \theta_{1}}{d r}\right) \\
& \quad+\frac{n(r, a, w ; \Delta)-n\left(r, w_{0}, w ; \Delta\right)}{r}+O\left(\frac{L(r)}{r}\right)
\end{aligned}
$$

so that

$$
\begin{gather*}
T\left(r, w_{0}, w ; \Delta\right)=T(r, a, w ; \Delta)=\frac{1}{2 \pi} \sum \int_{r_{0}}^{r}\left(\log \frac{\left[w_{2}, a\right]}{\delta} \frac{d \theta_{2}}{d r}\right. \\
\left.-\log \frac{\left[w_{1}, a\right]}{\delta} \frac{d \theta_{1}}{d r}\right) d r+O\left(\int_{r_{0}}^{r} \frac{L(r)}{r} d r\right) . \tag{7}
\end{gather*}
$$

Multiplying $d \omega(\alpha)$ and taking the integral mean over $\left[w, w_{0}\right] \leqq$ $\delta_{1}<\delta$, we have

1) A. Dinghas: Zur Invarianz der Shimizu-Ahlforsschen Charakteristik. Math. Z. 45, 25-28.

$$
\begin{align*}
& T\left(r, w_{0}, w ; \Delta\right)=\frac{1}{\pi \delta_{1}^{2}} \int_{\left[a, w_{0}\right] \leq \delta_{1}} T(r, a, w ; \Delta) d \omega(a) \\
& \quad+\frac{1}{2 \pi^{2} \delta_{1}^{2}} \int_{r_{0}}^{r} d r \sum \int_{\left[a, w_{0}\right] \leq \delta_{1}}\left(\log \frac{\left[w_{2}, a\right]}{\delta} \frac{d \theta_{2}}{d r}-\log \frac{\left[w_{1}, a\right]}{\delta} \frac{d \theta_{1}}{d r}\right) d \omega(a) \\
& \quad+O\left(\int_{r_{0}}^{r} \frac{L(r)}{r} d r\right) \tag{8}
\end{align*}
$$

We see easily that by (4)

$$
\frac{1}{\pi \delta_{1}^{\delta}} \int_{\left[a, w_{0}\right] \leq \delta_{1}} T(r, a, w ; \Delta) d \omega(a)=\int_{r_{0}}^{r} \frac{S(r, w ; \Delta)}{r} d r+O\left(\int_{r_{0}}^{r} \frac{L(r)}{r} d r\right) .
$$

Since w_{1} and w_{2} lie on $\left[w, w_{0}\right]=\delta$,

$$
\int_{\left[a, w_{0}\right] \leq \delta_{1}} \log \frac{\left[w_{1}, a\right]}{\delta} d \omega(a)=\int_{\left[a, w_{0}\right] \leq \delta_{1}} \log \frac{\left[w_{2}, a\right]}{\delta} d \omega(a)=A=\text { const. }
$$

hence the second term of (8) becomes

$$
\frac{A}{2 \pi^{2} \partial_{1}^{2}} \int_{r_{0}}^{r} \frac{d}{d r} \sum\left(\theta_{2}(r)-\theta_{1}(r)\right) d r=\frac{A}{2 \pi^{2} \delta_{1}^{2}}\left(\theta(r)-\theta\left(r_{0}\right)\right)=O(1) .
$$

Hence

$$
\begin{equation*}
T\left(r, w_{0}, w ; \Delta\right)=\int_{r_{0}}^{r} \frac{S(r, w ; \Delta)}{r} d r+O\left(\int_{r_{0}}^{r} \frac{L(r)}{r} d r\right) \tag{9}
\end{equation*}
$$

Let a be a point in $\left[w, w_{0}\right]<\delta$ and $U(w)$ be a linear transformation which makes $\left[w, w_{0}\right]<\delta$ invariant and carries a to w_{0}, so that $w_{0}=U(a)$, then

$$
\begin{align*}
T(r, & U(a), U(w) ; \Delta)=T\left(r, w_{0}, U(w) ; \Delta\right) \\
& =N(r, U(a), U(w) ; \Delta)+\frac{1}{2 \pi} \int_{\theta_{r}} \log \frac{1}{[U(w), U(a)]} d \varphi \\
& =N(r, a, w ; \Delta)+\frac{1}{2 \pi} \int_{\theta_{r}} \log \frac{1}{[w, a]} d \varphi+O(1) \\
& =T(r, a, w ; \Delta)+O(1) . \tag{10}
\end{align*}
$$

Hence from (9), (10) and Theorem II, we have

$$
\begin{aligned}
T(r, a, w ; \Delta) & =T\left(r, w_{0}, U(w) ; \Delta\right)+O(1) \\
& =\int_{r_{0}}^{r} \frac{S(r, U(w) ; \Delta)}{r} d r+O\left(\int_{r_{0}}^{r} \frac{L(r)}{r} d r\right) \\
& =\int_{r_{0}}^{r} \frac{S(r, w ; \Delta)}{r} d r+O\left(\int_{r_{0}}^{r} \frac{L(r)}{r} d r\right) . \quad \text { q.e.d. }
\end{aligned}
$$

[Vol. 18,
Remark I. Let D be a domain on K, which is bounded by an analytic Jordan curve C and D correspond to Δ on the z-plane by $w=w(z)=f(z)$. We map D conformally on $\left[v, v_{0}\right]<\delta$ by $w=\psi(v)$, then $w(z)$ becomes $v(z)$. Let $L_{1}(r), L(r)$ be the length of the curve on K, which correspond to θ_{r} by $v=v(z), w=w(z)$ respectively, then $L_{1}(r)=O(L(r))$. By Theorem I, for any two points α, β in $\left[v, v_{0}\right] \leqq$ $\delta_{1}<\delta$,

$$
\begin{aligned}
T(r, \alpha, v ; \Delta) & =T(r, \beta, v ; \Delta)+O\left(\int_{r_{0}}^{r} \frac{L_{1}(r)}{r} d r\right) \\
& =T(r, \beta, v ; \Delta)+O\left(\int_{r_{0}}^{r} \frac{L(r)}{r} d r\right) .
\end{aligned}
$$

Since $T(r, \alpha, v ; \Delta)=T(r, a, w ; \Delta)+O(1)$, where $a=\psi(\alpha)$, we have for any two points a, b in $D_{1} \subset D$,

$$
T(r, a, w ; \Delta)=T(r, b, w ; \Delta)+O\left(\int_{r_{0}}^{r} \frac{L(r)}{r} d r\right)
$$

Multiplying $d \omega(b)$ and taking the integral mean over $D_{1}(\subset D)$, we have

$$
T(r, a, w ; \Delta)=\int_{r_{0}}^{r} \frac{S(r, w ; \Delta)}{r} d r+O\left(\int_{r_{0}}^{r} \frac{L(r)}{r} d r\right)
$$

Hence Theorem I holds, if $\left[w, w_{0}\right]<\delta$ is replaced by any domain bounded by an analytic Jordan curve on K.
II. Since

$$
A(r, w ; \Delta)=\iint_{\Delta_{r}} \frac{\left|w^{\prime}\right|^{2}}{\left(1+|w|^{2}\right)^{2}} r d r d \varphi, \quad L(r)=r \int_{\theta_{r}} \frac{\left|w^{\prime}\right|}{1+|w|^{2}} d \varphi,
$$

we have

$$
\begin{gathered}
{[L(r)]^{2} \leqq 2 \pi r \int_{\theta_{r}} \frac{\left|w^{\prime}\right|^{2}}{\left(1+|w|^{2}\right)^{2}} r d \varphi=2 \pi r \frac{d A}{d r}} \\
\int_{r_{0}}^{r} \frac{[L(r)]^{2}}{r} d r \leqq 2 \pi A(r, w ; \Delta)=O(T(2 r, w ; \Delta))
\end{gathered}
$$

so that

$$
\begin{equation*}
\int_{r_{0}}^{r} \frac{L(r)}{r} d r \leqq \sqrt{\log r \int_{r_{0}}^{r} \frac{[L(r)]^{2}}{r} d r}=O(\sqrt{T(2 r, w ; \Delta) \log r}) \tag{11}
\end{equation*}
$$

Dinghas ${ }^{1)}$ proved that

$$
\int_{r_{0}}^{r} \frac{L(r)}{r} d r=O(\sqrt{T(r, w ; \Delta)} \log T(r, w ; \Delta))
$$

except certain intervals I_{n}, such that $\sum_{n} \int_{I_{n}} d \log r<\infty$.

1) A. Dinghas: Eine Bemerkung zur Ahlforsschen Theorie der Überlagerungsflächen. Math. Z. 44.
III. In my former paper ${ }^{1)}$ I have proved that,

$$
(q-1) S(r, w ; \Delta) \leqq \sum_{i=1}^{q} n\left(r, a_{i}, w ; \Delta\right)+\Lambda(r)+O(L(r)) \quad\left(\left[a_{i}, w_{0}\right]<\delta\right)
$$

where $\Lambda(r)$ is the number of holes in Δ_{r}, which is $\leqq S(r, w ; \Delta)+O(L(r))$.
Hence putting $\Gamma(r)=\int_{r_{0}}^{r} \frac{\Lambda(r)}{r} d r$, we have
Theorem III. For any $q(\geqq 2)$ points a_{i} in $\left[w, w_{0}\right]<\delta$,

$$
\begin{equation*}
(q-1) T(r, w ; \Delta) \leqq \sum_{i=1}^{q} N\left(r, a_{i}, w ; \Delta\right)+\Gamma(r)+O\left(\int_{r_{0}}^{r} \frac{L(r)}{r} d r\right) \tag{12}
\end{equation*}
$$

where

$$
\Gamma(r) \leqq T(r, w ; \Delta)+O\left(\int_{r_{0}}^{r} \frac{L(r)}{r} d r\right)
$$

This corresponds to Nevanlinna's second fundamental theorem.
From (11), (12) and Theorem I, we have the following theorem, which corresponds to Borel's theorem.

Theorem IV. Let $f(z)$ be a meromorphic function of finite order ρ in Δ and $r_{n}(a)$ be the absolute values of the zero points of $f(z)-a$ in Δ, then $\sum_{n=1}^{\infty} \frac{1}{\left[r_{n}(\alpha)\right]^{\rho+\varepsilon}}(\varepsilon>0)$ is convergent for all a in $\left[w, w_{0}\right]<\delta$ and $\sum_{n=1}^{\infty} \frac{1}{\left[r_{n}(\alpha)\right]^{\rho-\varepsilon}}$ is divergent, except at most two values of a in $\left[w, w_{0}\right]<\delta$. If $\varlimsup_{r \rightarrow \infty} \frac{\log \Gamma(r)}{\log r}<\rho$, then $\sum_{n=1}^{\infty} \frac{1}{\left[r_{n}(\alpha)\right]^{\rho-\varepsilon}}$ is divergent except at most one value of a.
2. Ahlfors' theorem on the number of asymptotic values.

Let w_{0} be a transcendental singularity of an inverse function $z=$ $\varphi(w)$ of a meromorphic function $w=f(z)$ for $|z|<\infty$ and w_{0} is an accessible boundary point of the Riemann surface F of $\varphi(w)$ and a δ neighbourhood U of w_{0} correspond to Δ on the z-plane. From the accessibility of w_{0}, Δ contains a curve C extending to infinity, such that [$f(z), w_{0}$] tends to zero, when z tends to infinity along C. By Iversen, w_{0} is called a direct transcendental singularity, if $f(z)-w_{0}$ has no zero points in Δ. Ahlfors ${ }^{2}$ proved that if $f(z)$ is of finite order ρ, then the number n of direct transcendental singularities is $\leqq 2 \rho$, if $n \geqq 2$. We will show that if the number of zero points of $f(z)-w_{0}$ in Δ is not so large, then the number n of such singularities is $\leqq 2 \rho$, if $n \geqq 2$. For this purpose, we will introduce a new notion "quasi-direct transcendental singularity" as follows. Now the boundary of Δ consists of two classes of curves. Namely the ones which extend to infinity and the others which are closed curves and form holes of Δ. We add all such holes to Δ and the resulting simply connected domain be denoted

[^1]by $\bar{\Delta}$. If Δ has boundary curves which extend to infinity, let Γ be the outermost such curve and the simply connected domain bounded by Γ be denoted by $\overline{\bar{\Delta}}$. If there is no such curve, we take the whole z plane as $\overline{\bar{\Delta}}$. We also denote the total length of the common part of $\left|z-z_{0}\right|=r$ and $\Delta, \bar{\Delta}, \overline{\bar{\Delta}}$ by $r \theta(r), r \bar{\theta}(r), r \overline{\bar{\theta}}(r)$ respectively.

Let $n(r)$ be the number of zero points of $f(z)-w_{0}$ in the common part of Δ and $\left|z-z_{0}\right| \leqq r$. We will call w_{0} a quasi-direct transcendental singularity, if for any choice of z_{0} and U,

$$
\begin{equation*}
n(r) \leqq K \int_{r_{0}}^{r} \frac{d r}{r \bar{\theta}(r)} \tag{13}
\end{equation*}
$$

where K is independent of r, but may depend on z_{0} and U.
Then the following theorem holds.
Theorem V. Let $f(z)$ be a meromorphic function of finite order ρ for $|z|<\infty$, then the number n of quasi-direct transcendental singularities of $\varphi(w)$ is $\leqq 2 \rho$, if $n \geqq 2$.

To prove Theorem V, we first prove the following theorem.
Theorem VI. Let $0<\left|a_{n}\right|<1$ and $n(r)$ be the number of $a_{n}\left(\left|a_{n}\right| \leqq r<1\right) \quad$ and $\quad F(z)=\prod_{n=1}^{\infty} \frac{\bar{a}_{n}}{\left|a_{n}\right|} \frac{a_{n}-z}{1-\bar{a}_{n} z}(|z|<1) . \quad$ If $\quad n(r) \leqq$ $K \log \frac{1}{1-r}(K=$ const. $)$, then there exists a sequence $r_{n} \rightarrow 1$, such that $\operatorname{Min}_{|z|-r_{n}}|F(z)| \geqq \delta>0$ ($\delta=$ const. $)$.

To prove Theorem V , let w_{0} be a quasi-direct transcendental singularity, which we assume $w_{0}=\infty$. Let U be a δ-neighbourhood of w_{0}, which corresponds to Δ on the z-plane and z_{n} be the poles of $f(z)$ in Δ, which satisfy (13). We map $\bar{\Delta}$ on $|\zeta|<1$ and let z_{n} become ζ_{n} in $|\zeta|<1$, then by. Ahlfors' Verzerrungssatz, ζ_{n} satisfy the condition of theorem VI. We put $G(z)=g(\zeta)=\prod_{n=1}^{\infty} \frac{\bar{\zeta}_{n}}{\zeta_{n}} \frac{\zeta_{n}-\zeta}{1-\bar{\zeta}_{n} \zeta}$, then $|G(z)| \leqq 1$ in and on the boundary of Δ and $G\left(z_{n}\right)=0$, so that $F(z)=G(z) f(z)$ is regular in Δ and $|F(z)| \leqq|f(z)|$ in $\Delta . \quad F(z)$ is unbounded in Δ. For, if $F(z)$ is bounded in Δ and $|F(z)| \leqq K$, then $|G(z)| \leqq \frac{K}{|f(z)|}$. By the hypothesis, Δ contains a curve C, such that $f(z) \rightarrow \infty$ along C, so that $G(z) \rightarrow 0$ along C, which contradicts Theorem VI. Hence $F(z)$ is unbounded in 4 . From this, we proceed exactly in the same way as Ahlfors' proof and complete the proof.

If we apply Theorem I, we can prove the following extension.
Theorem VII. Let a δ-neighbourhood U of an accessible singularity of an inverse function $z=\varphi(w)$ of a meromorphic function $w=f(z)$ contain n quasi-direct transcendental singularities and U correspond to Δ on the z-plane. If $f(z)$ is of finite order ρ in Δ, then if $n \geqq 2$,

$$
\begin{equation*}
n \leqq \frac{\rho}{\pi} / \varlimsup_{r \rightarrow \infty} \frac{1}{\log r} \int_{r_{0}}^{r} \frac{d r}{r \overline{\bar{\theta}}(r)} \tag{14}
\end{equation*}
$$

If Δ has a boundary curve extending to infinity, then (14) holds without the restriction, $n \geq 2$.

It is easily seen that Theorem V contains the following Valiron's theorem ${ }^{1)}$ as a special case.

Corollary. If $T(r)=O\left((\log r)^{2}\right)$, then there is at most one asymptotic value.

Mr. Tumura ${ }^{2)}$ proved that $T(r)=O\left((\log r)^{2}\right)$ can be replaced by $\lim _{h \rightarrow \infty} \frac{T(r)}{(\log r)^{2}}<\infty$.

The full detail of the proof will appear in the Japanese Journal of Mathematics, 18.

[^2]
[^0]: 1) C. f. K. Kunugui : Une généralisation des théorèmes de MM. Picard-Nevanlinna sur les fonctions méromorphes. Proc. 17 (1941), 283-289.
 Y. Tumura: Sur le problème de M. Kunugui. Proc. 17 (1941), 289-295.

 Mr. Tumura obtained the same result as Theorem 1, but he informed me that be found a mistake in his proof and will publish a revised proof in this proceedings.

[^1]: 1) M. Tsuji : On the behaviour of an inverse function of a meromorphic function at its transcendental singular point. Proc. 17 (1941), 414-417.
 2) L. Ahlfors: Über die asymptotischen Wert der meromorphen Funktionen endlicher Ordnung. Acta Acad. Aboensis, Math. et Phys. 6 (1932).
[^2]: 1) G. Valiron: Sur les valeurs asymptotiques de quelques fonctions méromorphes. Rendiconti Circolo mat. di Palermo. 46 (1925).

 Sur le nombre des singularités transcendantes des fonctions inverse d'une classe d'algébroide. C. R. 200 (1936).
 2) Y. Tumura: Sur le théorème de M. Valiron et les singularités transcendant indirectement critiques. Proc. 17 (1941), 65-69.

