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29. On the Behaviour of an Inverse Function
of a Meromorphic Function at its Trans-
cendental Singular Point, III.

By Masatsugu TsuJI
Mathematical Institute, Tokyo Imperial University.
(Comm. by T. YosIE, M.LA.,, March 12, 1942))

1. Nevanlinna’s fundamental theorems.

Let w=w(2)=,(2) be a meromorphic function for |z|<<o and z=
¢(w) be its inverse function. Let K be the Riemann sphTre of ldiameter
a—b
VQA+aePA+[P)°

A S-neighbourhood U of w, is the connected part of the Riemann
surface F' of ¢(w), which lies in [w, w]<<é and has w, as an inner
point or as a boundary point. Let U correspond to 4 on the z-plane,
then [f(2), we] <<é in 4 and [f(2), we]=0 on the boundary of 4. We
assume that 4 extends to infinity. Let % be a point on the z-plane
and 4,, 0, be the common part of 4 and |2—2z|<r and |z—z|=r
respectively, We put A(r, w;d)=the area on K, which is covered by
A(r, w; 4)

7o?
area of [w,w] <6 on K, n(r,a, w;d)=the number of zero points of
f(@)—a in 4,, where [a, wo] <d.

1, which touches the w-plane at w=0 and [a, b]=

w=f(2), when 2z varies in 4,, S(r,w; d)= , where 76? is the

N(r, a, w; A)=S" wdr’

0

1 j 1
[ y Wy ; d)=— 1 T - ’
m(r, a, w; 4) e og (), o] dy

T(r,a,w; )=N(r, a,w; 4)+m(r, a, w; d),
L(r)=the total length of the curve on K, which corresponds to 6,.

Then we have the following theorem?, which corresponds to Nevan-
linna’s first fundamental theorem.

Theorem I.  T(r, a,'w;d)=T(r,w;A)+O(Sr L—i”—dr) ,

7o

where T(r,w; )= Sr ﬂw dr.

o

We will call T'(r, w;d) the characteristic function of f(2) in 4 and

1) C.f. K. Kunugui: Une généralisation des théorémes de MM. Picard-Nevanlinna
sur les fonctions méromorphes. Proc. 17 (1941), 283-289.

Y. Tumura: Sur le probléme de M. Kunugui. Proc. 17 (1941), 289-295.

Mr. Tumura obtained the same result as Theorem 1, but he informed me that he
found a mistake in his proof and will publish a revised proof in this proceedings.
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iim log T'(r, w; 4)
7300 log r
following theorem.

Theorem II. Let U(w) be a linear tramsformation, which makes

[w, we] <o mvariant, then S(r, w; A)——S(r, U(w); A)=O(L(r)) .
Proof. Let I, be the whole boundary of 4, and I,=0,+7,. and

a, b be any two points in [w, we] < 8;<< 4, then

1 w.b] 4, lw=b]

2 sa dr ® Tw,a] [w, a] dp= 2r Svr dr o8 lw—a dp

=p the order of f(z) in 4. We will first prove the

2nr w—a  2nr Jr, w—a
_nrbw;)—nlr,a,w;4) _ 1 s darg ~b o)
r 2nr —-a
Since a, b, lie in [w, wy] < 61, we have easily
_l_s darg-u gK(gl)LQl,
2nr wW—a r
where K(5,) depends on d; only. Hence
I= w(r, a, w; d) d 1 1
r ton L dr Og[,a]dsp
— mr, b w; 4) _ﬁ"‘ —d—l d O(L(fr) 9
r o Og[ 0 %t r)' @

Let dw(b) the surface element on K at b, then since wd? is the area
of [w, we] < 6y, taking the integral mean over [w, wy] < 6;, we have

Sir,w;d) 1 d
g r * 27[262 S dso Sfb wyl< 01 dr log [w’ b] dw(b)
+0( L(’”)) 3
Ay(r, w; 4)

where Sy(r,w; )= , Ai(r,w;d) being the area on K over

702
[w, wo] < 8;, which is covered by w=f(2), when z varies in 4,. By
Ahlfors’ theorem,

S, w; 4)—Si(r, w; )=0(L(r)) , (4)
so that
M i Y ot
=S iy 2:252 S S[,, wmﬁﬁ log- [w, 57 ®
+o(£1). 5)
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We have a similar expression for U(w). Since n(r,a, w; d)=
n(r, U(), U (w);d), we have

_1_5 g[U(ﬂw) U@l 4 dp= S(r,w; 4)—8(r, Uw); 4)
o, dr [w, a] r

1 {U(w), b] L(r)
225 So,d“’jn,wm,,ldr 8 % (b)+0( ) (6)

+

By means of Dinghas’ theorem®, we can prove, if [b, wo] < 0;<<9,

\__ ox LUMW), U@)] ~ | w’ |
dr [w, a] = 1+|w
L[U(w), b] < w |
] dr % w,b] ’ K1+|w|2’
where K is a constant. Since L(r)='rgo ll_@r;ll P dy, we have
S@r,w; )= S (r, Uw); 4)=0(L()) . g.e.d.

Proof of Theorem I. Let 0, consist of circular ares whose end
points are reé'”, re and let 0(r) =3 (6(r) —0u(r)). We put wy=w(re™),

wy=w(re®), then [wy, we]=[ws wo]=05. Let a be a point in [w, w] <
31<6, then by (1),

d d
) y W 4)—-- y Uy W 4
o m(r, we, w; d) dr m(r, a, w; d)
— 1 [w {) a’] d02 [wl’ a’] d01
=1 S1(1og W2l @Oz ... LW,al aby
2 = ( o [we, wo] dr & [w1, wol dr)

4, a, w; 4) —nlr, We, W; d) _,_O( L('r))’
r r

so that

N == . =_-‘_]:_ " ____[Wz, a'] _@Qg_
T, wo,w; H=T(r,a, w; 4d) o P L <log 5 dr

og[—wla’—‘]b1 %i—‘) dr+ O(S; Lg—) dr) . (7

Multiplying dw(a) and taking the integral mean over [w, wy] <
d; << 04, we have

1) A. Dinghas: Zur Invarianz der Shimizu-Ahlforsschen Charakteristik. Math.
Z. 45, 25-28.
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T(r, we, w; A)=~—1?

1 5[«1. wol< o1

[wy, a] d; _, . [wy,a] dby
+- o 82_; drzgm’wﬂql(bg 5 dr log s dr )dw(a)

+0(Sr %’idr) . ®)

To

T(r, a, w; 4)do(a)

We see easily that by (4)

1 T(r a,w; A)dw(a)= gr —‘SE%”—'—Q dr +O<§r V%rl dr) .

77"3% SCa. wol = 01 )

Since w; and w; lie on [w, we]=4,

log“@}é&]‘ dw(a)=j log[l"géﬂl dw(a)=A=const.,

Sta, wels d1 [, wol < &1

hence the second term of (8) becomes

230 S 2 (0u(r) = 0:r))dr= Aag (0r)—0(r)) =0(1) .
Hence
T(r, w0 w3 4)= ﬂﬁ;’“—’-‘—"ldwo(jr ﬁi”—)dfr). ©)

o 7o

Let a be a point in [w, w]<<d and U(w) be a linear transforma-
tion which makes [w, wg] <4 invariant and carries o to w, so that
wo=U(a), then

T(r, U(a), Uw); 4) =T (7, we, Uw); 4)

B . 1 S S
_.N(’r, U(a)’ U(w)’ A) T 2 s log [U(’W), U(a')]

de+0(1)

=N(r,a,w; )+—\| 1
=N(r,a, w; )+2nj og[w’a]

=T(r, a, w; 4)+0(1). (10)

Hence from (9), (10) and Theorem II, we have

T(r, a, w; dy="T(r, wo, Ulw); 4)+0(1)

_—_jr Str, Uw); 4) dr+ qu é%dr)

70 r 70

=Sr Str,wid) 4., O(Y _g(,’_‘r_)_ dr) . q.e.d.

e r 7o
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Remark 1. Let D be a domain on K, which is bounded by an
analytic Jordan curve C and D correspond to 4 on the z-plane by
w=w(z)=f(z). We map D conformally on [v, v] <<é By w=¢(v), then
w(z) becomes v(z). Let Ly(r), L(r) be the length of the curve on
K, which correspond to 6, by v=v(), w=w(z) respectively, then
L,(r)=O(L(r)). By Theorem I, for any two points «, 8 in [v,v] =
0, <<,

T(rya,v;)=T(r,B,v; A)+O(§r Lulr) dr)
r

o

=T(r,B,v; )+ O(Sr —%@—dr) .

ro

Since T'(r,a,v; d)=T(r,a,w; )+0(1), where a=¢(z), we have for
any two points a,b in D; < D,

T(r,a,w; 4)=T(r,b, w; 4) +O(Sr —I“—:fl d'r> .

7o

Multiplying dw(b) and taking the integral mean over D; (< D), we

have
T(r, a, w; A)=j: 5—("—?’*@ dr+ o(j_L-f}‘l dr).

0

Hence Theorem I holds, if [w,w,]<<o 1s replaced by any domain
bounded by an analytic Jordan curve on K.
II. Sinece

A(r,w; )= .”4, *(Tlf)l';u% rdrde , L(r)= rjar —l—l—vul/ulj—lg de,

we have

2 < B L G P 7. |
[L(r)] =2Mj0r At P rdy=2nr i’

j” [Li’"')]z dr < 2z A(r, w; )= 0(T(27', w;d)) ’

o

so that

jr -Q(:ﬁ)dr < N/logrr LL—(TQE d'r=0(1/T(2r, w; d) log 7‘) . (11)

o

Dinghas? proved that

Sr _J;g_) dr=0(v/T(r,w; 4) log T(r, w; 4)),

o

except certain intervals I,, such that > SI dlog r<< oo,

1) A. Dinghas: Eine Bemerkung zur Ahlforsschen Theorie der Uberlagerungs-
flichen. Math. Z. 44.
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III. In my former paper® I have proved that,
(@=1)S(r,w; 4) < nlr, @i, w3 )+ A +O(L)  (as wi] <3,

where A(r) is the number of holes in 4,, which is < S(r, w; 4)+ O(L(r)).
Hence putting I’('r)=sr A:'—r)—dr, we have

ro

Theorem III. For any q(=2) points a; in [w, wy] <9,
Q@—DT@r,w;a) < ZilN(r, s WS A)+P(r)+0(r —Iiy—)d'r) , (12)

]

where Ir)Z Tlr,w; )+ O(r %Q dr) .

7o

This corresponds to Nevanlinna’s second fundamental theorem.

From (11), (12) and Theorem I, we have the following theorem,
which corresponds to Borel’s theorem.

Theorem IV. Let f(2) be a meromorphic function of finite order
pin d omd 'rn(a) be the absolute values of the zero points of f(z)—a in

4, then 2_;[ e )],, —(¢>0) s comvergent for all a in [w,w]<<d

and 2“__ is divergent, except at most two wvalues of a in
w1 [ra(a)]e

[w, wl<<é. If hm lolg g :.T) < p, then 2

1 [7a( )]" :
cept at most one value of a.

2. Ahlfors’ theorem on the number of asymptotic values.

Let wy be a transcendental singularity of an inverse function z=
o(w) of a meromorphic function w=s(2) for |2|<<e and w, is an
accessible boundary point of the Riemann surface F' of ¢(w) and a o-
neighbourhood U of w, correspond to 4 on the z-plane. From the
accessibility of w,, 4 contains a curve C extending to infinity, such that
[ f(2), wy] tends to zero, when z tends to infinity along C. By Iversen,
w, is called a direct transcendental singularity, if f(z) —w, has no zero
points in 4. Ahlfors® proved that if f(z) is of finite order p, then the
number n of direct transcendental singularities is < 2p, if n=>2. We
will show that if the number of zero points of f(z)—w, in 4 is not
so large, then the number n of such singularities is < 2p, if n=>2.
For this purpose, we will introduce a new notion * quasi-direct trans-
cendental singularity ” as follows. Now the boundary of 4 consists of
two classes of curves. Namely the ones which extend to infinity and
the others which are closed curves and form holes of 4. We add all
such holes to 4 and the resulting simply connected domain be denoted

is divergent ex-

1) M. Tsuji: On the behaviour of an inverse function of a meromorphic function
at its transcendental singular point. Proc. 17 (1941), 414-417.

2) L. Ahlfors: Uber die asymptotischen Wert der meromorphen Funktionen
endlicher Ordnung. Acta Acad. Aboensis, Math. et Phys. 6 (1932).
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by 4. If 4 has boundary curves which extend to infinity, let I" be the
outermost such curve and the simply connected domain bounded by I"
be denoted by 4. If there is no such curve, we take the whole z-
plane as 4. We also denote the total length of the common part of

|2—2|=r and 4, 4, 4 by r0(r), r(r), r6(r) respectively.

Let n(r) be the number of zero points of f(z)—w, in the common
part of dand |z—z| <r. We will call w, a quasi-direct transcendental
singularity, if for any choice of 2z, and U,

Todr
n(r)< K s 50 (13)
where K is independent of 7, but may depend on 2z, and U.

Then the following theorem holds.

Theorem V. Let f(z) be a meromorphic function of finite order
p for | z| << oo, then the number n of quasi-direct transcendental singu-
larities of o(w) is < 2p, if n=2.

To prove Theorem V, we first prove the following theorem.

Theorem VI. Let 0<<|a,|<<1 omd fn(r) be the number of

alla | Er<<1l) and F()= f:f] ll— (\zl<1) If nr)<

Klog - 1 =, (K=const.), then there exists a sequence r,—1, such that
Mm | F(z)| =6 >0 (d=const.).

2l=r,

To prove Theorem V, let w, be a quasi-direct transcendental singu-
larity, which we assume wy=cc. Let U be a d-neighbourhood of w,,
which corresponds to 4 on the z-plane and 2z, be the poles of f(2) in

4, which satisfy (13). We map 4 on |¢|<<1 and let 2, become &, in
|¢|<<1, then by Ahlfors’ Verzerrungssatz, ¢, satisfy the condition of

theorem VI. We put G(a)=g(0)= 1 gn 1‘155{, then |G)| <1 in
and on the boundary of 4 and G(z,)= On so that F(2?)=G()f(?) is re-
gular in 4 and |F()|<|f(?)| in 4. F(2) is unbounded in 4. For,

if F'(z) is bounded in 4 and |F(2)| < K, then |G(z)|_§v%—l. By
the hypothesis, 4 contains a curve C, such that f(2) — o along C, so
that G(z) —0 along C, which contradicts Theorem VI. Hence F(2) is
unbounded in 4. From this, we proceed exactly in the same way as
Ahlfors’ proof and complete the proof.

If we apply Theorem I, we can prove the following extension.

Theorem VII. Let o od-neighbourhood U of an accessible singu-
larity of an inverse function z=gp(w) of a meromorphic function
w=f(2) contain n quasi-direct transcendental singularities and U cor-
respond to 4 on the z-plane. If f(2) is of finite order p in 4, then

if n=2,
lim —-’"— 14
/ > logr ro TO(r) (14)
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If 4 has a boundary curve extending to infinity, then (14) holds with-
out the vestriction, n = 2,

It is easily seen that Theorem V contains the following Valiron’s
theorem? as a special case.

Corollary. If T(r)=0((log 1')2), then there is at most one asymp-
totic value.

Mr. Tumura® proved that T(r)=0((log 1')2) can be replaced by
o T(r) -~
1‘1-%: (log 7)? <

The full detail of the proof will appear in the Japanese Journal
of Mathematics, 18.

1) G. Valiron: Sur les valeurs asymptotiques de quelques fonctions méromorphes.
Rendiconti Circolo mat. di Palermo. 46 (1925).

Sur le nombre des singularités transcendantes des fonctions inverse d’une classe
d’algébroide. C. R. 200 (1936).

2) Y. Tumura: Sur le théoréme de M. Valiron et les singularités transcendant
indirectement critiques. Proc. 17 (1941), 656-69.



