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(Comm. by T. YosIE, M.LA., March 12, 1942.)

1. Nevanlinna’s fundamental theorems.
Let w=w(z)=f(z) be a meromorphic function for zl<: co and z=

(w) be its inverse function. Let K be the Riemann sphere of diameter

1, which touches the w-plane at w=O and [a, b]=/(l+lal)(l+tb[).
A -neighbourhood U of w0 is the connected part of the Riemann

surface F of (w), which lies in [w, w0] <:: and has w0 as an inner
point or as a boundary point. Let U correspond to on the z-plane,
then If(z), w0] < in and If(z), wo]= on the boundary of . We
assume that extends to infinity. Let z0 be a point on the z-plane
and , O be the common part of and Z-Zo]r and Z-Zol=r
respectively. We put A(r, w; )=the area on K, which is covered by

w=f(z), when z varies in , S(r, w; )= A(r, w; z), where is the

area of [w, w0] on K, n(r, a, w;)=the number of zero points of
f(z)-a in , where [a, w0] <:: .

n(r, a, w" )N(r, a, w; )= dr,
ro r

1 I log 1 d,re(r, a, w; }=-- [w(re), a]

T(r, a, w;)=N(r, a, w; z)+ re(r, a, w;3),

L(r)=the total length of the curve on K, which corresponds to 0.
Then we have the following theoremD, which corresponds to Nevan-
linna’s first fundamental theorem.

(I )Theorem L T(r, a, w; 3)= T(r, w; )+0 dr

where T(r, w; ) I S(r, w; 3) dr.
ro r

We will call T(r, w; ) the characteristic function of f(z) in A and

1) C.f.K. Kunugui" Une gnralisation des thormes de MM. Picard-Nevanlinna
sur les fonctions mromorphes. Proc. 17 (1941), 283-289.

Y. Tumura: Sur le problme de M. Kunugui. Proc. 17 (1941), 289-295.
Mr. Tumura obtained the same result as Theorem 1, but he informed me that he

found a mistake in his proof and will publish a revised proof in this proceedings.
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Iim log T(r, w; 3)= the order of f(z) in 3. We will first prove the
log r

ollowing theorem.
Theorem II. Let U(w) be a linear transformation, which makes

[w, w0] <: invariant, then S(r, w; )-S (r, U(w); ) O(L(r)).
Proof. Let I be the whole boundary of and F=8+r and

a, b be any two points in [w, w0] 3 , then

2 og[,a] og
1-

d arg w- b 1 d arg W ,.b
2ur rr w a 2ur rr w a

=n(r,b,w;3)-n(r,a,w;z) 1 darg w-b (1)
2r rr w-a

Since a, b, lie in [w, w0] 3, we have easily

1 darg w-b <K(3)L(r)
2ur rr

where K(3) depends on 3 only. Hence

i=n(r,a,w;3)+ 1 I d
r -d-lg

= n(r, b, w; Z) + 1 I d-- log

d
[w, a]

[, b] , ’ (2)

so that
n(r,a,w;d) + 1 I d

=S(r,w;d)+---l-I dI d log 1 do(b)
2u-o o dr -[wl ]

(5)

Let do(b) the surface element on K at b, then since = is the area
of [w, w0] , taking the integral mean over [w, wo] , we have

I= SI(’, 7A); ) + 1 d d log- 1 dw(b)

+0(L(r)) (3)

where S(r, w; )= A,(r, w; ) A(r, w;d) ing the area on K over

[w, w0] 3,, which is covered by w=f(z), when z varies in d. By
Ahlfors’ theorem,

s(r, ) S,(r, ) O(i(r))
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We have a similar expression for U(w).

n(r, U(a), U(w); ), we have
Since n(r,a,w;)=

2ul I-rd log [U(w),[w, a]U(a)] d= S(r, w; )- S(r,r U(w); )

I I [U(w),b] o(_L(r))1 d d log d(b)+ (6)+-- o .o<_, dr [w, b] \ r

By means of Dinghas’ theorem), we can prove, if [b, wo] ,
[U(w), U(a)]log

[w, a] 1/1 wl

log [U(w), b]
[w, b]

where K is a constant. Since L(r)=rI w’]
o,. 1 +lw

do, we have

S(r, w; )-S(r, U(w); 3) =O(L(r))
Proof of Theorem I. Let consist of circular arcs whose end

points are re’, re and let 0(r)=, (0(r)-0(r)), We put w=w(reO’),
w.=w(reJ, then [w, Wo] = [w., wo] . Let a be a point in [w, wo]

<: 5, then by (1),

d m(r, a, w" zl)d re(r, Wo, w; ) dr-dr

2 \ [w_, Wo] dr [w, Wo] dr /

so that

/ n(r, a, w;3)-n(r, Wo, ; ) "t-O(L(r)),

T(r, wo, w; )= T(r, a, w" )=-- log
ro dr

_log[Wx, a] dO)dr+O(I __L(r_)dr).dr ro r
(7)

Multiplying &o(a) and taking the integral mean over [w, wo]
<: , we have

1) A. Dinghas: Zur Invarianz der Shimizu-Ahlforsschen Charakteristik. Math.
Z. 45, 25-28.
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1 I T(r,a,w;J)T(v, wo, w;)=- .
1 Idr, I (log [w,aj d6 log | dm(a)

dr

Since w and w. lie on [w, w0]=3,

We see easily that by (4)

1 T(r, a, w; )&o(a) S(r, w; ) dr+0 dr

Hence

log do(a) | log dm(a)-- const.,a] [W:_a]. A

hence the second term of (8) becomes

2, ,or E 2, (8(r) O(ro)) 0(1).

I S(r’w;) dr/O(I dr). (9)T(r, wo, w;,)= L(r)
ro ro T

Let a be a point in [w, WoJ<: and U(w) be a linear transforma-
tion which makes [w,w]<: invariant and carries a to wo, so that
Wo= U(a), then

T(r, U(a), U(w);3)-T(r, Wo, U(w); ,)
1 I log 1 d

(, , ; )+0(1). (10)

Hence from (9), (10) and heorem II, we have

(,, ;I=r(r, ., g(w; ) +O(/

= S(r, U(w); ) dr+ 0 dr
ro T ro r

S(, , ) d+0 d . e. d.
ro r ro r

/O(I L(r) dr). (8)
ro r
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Remark /. Let D be a domain on K, which is bounded by an
analytic Jordan curve C and D correspond to z on the z-plane by
w=w(z)=f(z). We map D conformally on Iv, v0] <2 3 ly w=(v), then
w(z) becomes v(z). Let L,(v), L(v) be the length of the curve on
K, which correspond to ? by v v(z), w=w(z) respectively, then

L,(r)=O(L(r)). By Theorem I, for any two points a, in Iv, v0]

a, v; 3)= T(r, , v; )+0( .L(r) drT(r,
kJro /

ro

Since T(r,a,v;a)=T(r,a,w;a)+O(1), where a=p(a), we have for
any two points a, b in D D,

kdr r /

Multiplying &o(b) and taking the integral mean over D( D), we
have

S(r,w ) dr+O drT(r, a, w; d)=
ro ro

Hence Theorem I holds, if [w, w is replaced by any domain
bounded by an analytic Jordan curve on K.

II. Since

A(r, w )=II w’ .’
-(1 +l w [)

rgrge L(r) r d

we have

[L(r)] < 2ur w’ 2ur dA

so that

[L(r)]ogr dr=O(T(2r, w; )log). (11)
ro r ro

Dinghas) proved that

ro r

except certain intervals I, such that [ d log r< .
n JI

l) A, Dinghas" Eine Bemerkung zur Ahlforsschen Theorie der berlagerungs-
flichen Math. Z. 44.
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III. In my former paper) I have proved that,

( )(q-1)S(r,w;,)<n(r,a,w;,)-A(r)-O L(r) ([a, w0] <2 )
o

where A(r) is the number of holes in ,, which is S(r, w; 3)/o(n(r)).
Hence putting F(r)=I _A(r) dr, we have

ro

Theorem III. For any q( 2) poin a in [w, w0] ,
i-1 ro

where F(r) T(r, w 3)@O(r L(r) dr)
ro

This corresponds to Nevanlinna’s second fundamental theorem.
From (11), (12) and Theorem I, we have the following theorem,

which corresponds to Borel’s theorem.
Theorem IV. Let f(z) be a meromorphic function of finite order

p in 3 and r(a) be the absolute values of the zero points of f(z)-a in, then 1 ( 0) is convergent for all a in [W, Wo] < 3

and 1 is divergent, except at most two values of a in- [r(a)]-
[w, w 3. If lim log F(r) p, then 1 is divergent ex-

log r - [r(a)]-cept at most one value of a.
2. Ahlfors’ theorem on the number of ymptotic values.
Let w0 be a transcendental singularity of an inverse function z=

(w) of a meromorphic function w=f(z) for [z and w0 is an
accessible boundary point of the Riemann surface F of (w) and a 3-
neighbourhood U of Wo correspond to a on the z-plane. From the
accessibility of w0, contains a curve C extending to infinity, such that
[f(z), w0] tends to zero, when z tends to infinity along C. By Iversen,
w0 is called a direct transcendental singularity, if f(z)-wo has no zero
points in . Ahlfors) proved that if f(z) is of finite order p, then the
number n of direct transcendental singularities is 2, if n 2. We
will show that if the number of zero points of f(z)-wo in is not
so large, then the number n of such singularities is 2p, if n 2.
For this purpose, we will introduce a new notion "quasi-direct trans-
cendental singularity" as follows. Now the boundary of consists of
two classes of curves. Namely the ones which extend to infinity and
the others which are closed curves and form holes of . We add all
such holes to 6 and the resulting simply connected domain be denoted

1) M. Tsuji" On the behaviour of an inverse function of a meromorphic function
at its transcendental singular point. Proc. 17 (1941), 414-417.

2) L. Ahlfors" Ober die asymptotischen Wert der meromorphen Fun:ktionen
endlicher Ordnung. Acta Acad. Aboensis, Math. et Phys. $ (1932).
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by . If has boundary curves which extend to infinity, let F be the

outermost such curve and the simply connected domain bounded by F
be denoted by . If there is no such curve, we take the whole z-

plane . e also denote the total length of the common part of

]Z-ZoJ=r and , , by r(r), r(r), r(r) respectively.
t n(r) be the number of zero points of f(z)-wo in the common

part of and ]z-z0] r. We will call w0 a quasi-direct transcendental
singularity, if for any choice of z0 and U,

n(r) < K (13)
r(r)

where K is independent of r, but may depend on z0 and U.
Then the following theorem holds.
Theorem V. Let f(z) be a meromorphic function of finite order

p for z] , then the number n of quasi-direct transcendental singu-
larities of (w) is 2, if n 2.

To prove Theorem V, we first prove the following theorem.
Theorem VI. Let O a, l and n(r) the number of

a,(l a r < l) and F(z)= H a, a-z (]z<l). If n(r) g
1Klog r (K=cot.), then there exists a sequence r 1, such that

Min. F(z) > 0 (=cot.).
lzl-rn

To prove Theorem V, let w0 be a quasi-dirt transcendental singu-
larity, which we assume wo= . Let U be a -neighbourhood of w0,
which corresponds to z on the z-plane and z, be the poles of f(z) in

3, which satisfy (13). We map on 1 and let z become . in
] 1, then by. Ahlfors’ Verzerrungssatz, . satisfy the condition of

theorem VI. We put G(z)=g()= H -$- then IG(z) = 1 in

and on the boundary of z and G(z)=0, so that F(z)=G(z)f(z) is re-
gular in z and F(z) If(z)] in z. F(z)is unbounded in . For,

if F(z) is bounded in and F(z)K, then G(z)[ K By
If(z) ]"

the hypothesis, contains a curve C, such that f(z) along C, so
that G(z)0 along C, which contradicts Theorem VI. Hence F(z) is
unbounded in . From this, we proceed exactly in the same way as
Ahlfors’ proof and complete the proof.

If we apply Theorem I, we can prove the following extension.
Theorem VII. Let a -neighbourhood U of an accessible singu-

larity of an inverse function z=(w) of a meromorphic function
w=f(z) contain n quasi-direct tracendental singularities and U cor.
respd to the z-plane. If f(z) is of finite order p in , then
if n2,

/.* lof . r(r)" (1)
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If , has a boundary curve extending to infinity, then (14) holds with.
out the restriction, n 2.

It is easily seen that Theorem V contains the following Valiron’s
theorem1) as a special case.

T(r)=O((log r)), then there is at mostCorollary. If one
totic value.

proved that T(r)=O((logr)) can be replaced byMr. Tumura2)

lira T(r) < .- (log r)
The full detail of the proof will appear in the Japanese Journal

of Mathematics, 18.

1) G. Valiron" Sur les valeurs asymptotiques de quelques fonctions mromorphes.
Rendiconti Circolo mat. di Palermo. 46 (1925).

Sur le nombre des singularits transcendantes des fonctions inverse d’une classe
d’algbroide. C.R. 200 (1936).

2) Y. Tumura" Sur le thorme de M. Valiron et les singularits transcendant
indirectement critiques. Proc. 17 (1941), 65-69.


