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36. On a Theorem of F. and M. Riesz.

By Masatsugu TsSuJI.
Mathematical Institute, Tokyo Imperial University.
(Comm. by S. KAKEYA, M.IA,, April 18, 1942))

1. Let D be a domain on the w-plane, bounded by a rectifiable
curve I" and we map D conformally on |z|<<1, then F. and M. Riesz®
proved that a null set on |z|=1 corresponds to a null set on I" and a
null set on I" corresponds to a null set on |2|=1, where a set is called
a null set, if its measure is zero. We will prove an analogous theorem,
when D is a domain on a minimal surface, bounded by a rectifiable
curve.

Let I" be a rectifiable curve in an m-dimensional space, then it is
proved by Rado, Douglas and Courant that there exists a minimal
surface S through I

Let S be defined by a vector r=y(e)=(2(2), -, ¥u(2)) z=u+

w=re"’), where the components x,(2) (k=1,...,m) are continuous in
|2]| <1 and harmonic in | 2| <1 and r=x(e") maps |z|=1 continuously
and monotonically on I" and if we put

awk) =< 0%, O ="‘(_a£k_>2
Ekgl( sz-‘iau av’GkZ-la'v-’

then
E=G, F=0 in |z|<l1. (1)

Let ds be the line element on S, then

so that E—E(z)—?‘ k—l( aw’“)
Put xk=§)%(fk(z)), where f3(2) are regular in |z|<<1, then
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We will prove the following theorem.

Theorem I. Let S be a minimal surface in an m-dimensional
space, bounded by a rectifiable curve I' and t=x(z) map S on |2| <1,
then a null set on |z|=1 corresponds to a null set on I' and a null set
on I corresponds to a null set on |z|=1.

1) F.and M. Riesz: Uber die Randwerte einer analytischen Funktion. Quatriéme
congres des mathématiciens scandinaves a4 Stockholm, 1916,
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2. Proof of Theorem I, Let L be the length of I" and |z|=r<1
corresponds to 7, on S and L(r) be its length, then Rado® proved that
L{(r) is an increasing function of » and

L)< L, ligl L(r)=L. 4)
Since L(ﬁr)=f:'r V' E(re®)dd, we have from (3) and (4),
f)"fr | fllre®) | d6 </ §S2r VEGE)di=vE Lir) < V3L,

Hence by F. Riesz’ theorem?, fi(¢2) and hence u,(2) are absolutely

continuous on [z|=1 and lim fi(2)=fi(e?¥) exist almost everywhere
2>e®

on |z|=1, when 2 tends to ¢’ non-tangentially to |z|=1 and fi(e®) == 0

almost everywhere, if f,(2) == const. Since

E(¢%)= hm E(z)=1lim Z ( amk(z)> 1 llm Z | fr(2) |2

2>e'0 2560 k=1 asl’ 2 2>e0
=2 BIEE,  @=reY), )
E(e’) =0 almost everywhere, if one of f;(2) == const., (6)

which we assume in the following.
0
If @’;-l(g—l exists, which occurs almost everywhere by the absolute

continuity of u;(e?), then by Fatou’s theorem?®,

lim owx(2) = da(e)

z=re"),
25dil O dé ( )

when z tends to ¢ non-tangentially to |2|=1.
Hence by (5) and (6),

E(e?)= 21< da(e" )> == 0 almost everywhere. 9]

12—
Since x,(¢?) are absolutely continuous, L=S0 vV E(e?)df, so that a

null set on |2|=1 corresponds to a null set on I

Next we will prove that a null set on I" corresponds to a null set
on |z|=1. Let e be a null set on I" which corresponds to £ on |z|=1 and
¢ be a null set which contains e and is Gs, which corresponds to £ on
|z]=1. Then E’ contains E and being the continuous image of G; is G;
and hence is measurable. Hence if we deduce mE’'=0 from me =0, then

1) T. Radé: On Plateau’s problem. Annals of Math. 31 (1930).

2) F. Riesz: Uber die Randwerte einer analytischen Funktion. Math. Z. 18
(1928).

3) Fatou: Séries trigométriques et séries de Taylor Acta Math. 30 (1906).
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mE=0 follows a fortiori, so that we assume that E is measurable.
Since me=0, we can cover e by a sequence of open intervals 4s,,

such that i}ll ds, | <e, where |ds,| denotes the arc length of 4s,. Let
46,, correspond to 4s, on |z|=1, then IAS”|=SAJ/ E(e%)do, so that

=1

6> gll s, | =3 5 A GRLI L}/ B df.

Since ¢ is arbitrary, we have JEV E@®)di=0 and from (7), it follows
that mE=0, q.e.d.

3. Let fu)=w)+iys(z), then file)=2% ;9%
u o

Since from (5) and (6), kZﬁlf,ﬁ(e”) [2== 0 almost everywhere, we assume

=_1_ & / 2
that E(1) 5 gilfk(]-)l =0 and put

lim % = 4, lim 2 % _p,,
>l U ov

when z tends to 1 non-tangentially to |z|=1. Then by (1)
m 9 __ m _ m _
1§1A -—EBZ—E(I)#:O, EA,,B,C-—O. (8)

Let 83, 65 be two vectors on the z-plane whose initial points are z=1
and end points are z=(1—pcosf)+ipsind and 2’=1—p respectively,
then 63 makes an angle ¢ with 47

Let ox=(oxy, .-+, 6%,), O =(o21, ---, 0%,,) correspond to 83, 63’ on S,
then

Bxk=wk(z)—mk(1)‘=9”—’°(§)— (—p cos 0)+3§’°—(—Q psind
ou v

=(— A, cos 6+ B, sin 6) p+0(p) 9

where £ is a point on &3
Similarly

oxp,=— App+o(p) . (10)

Hence if we denote the angle between dx, ot by ¢, then by (8), (9)
and (10),

2 Bwkax,,

N/zaﬁzax
k=1

hm cos ¢= hm =cos @,

or
lim¢=¢, (11)

>0
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and

o lde|
lﬁ\da\ 1;133

NSt
'c-; =v'EQ)=+0. (12)

From (11), (12) we have the following theorem.
Theorem II. Under the same condition as Theorem I, the mapping
of |2|£1 on S s conformal at almost all points on |z|=1.



