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105. An Abstract Integral (VIII).

By Masae ORIHARA and Gen-ichir6 Suoucm.
Mathematical Institute, Tohoku Imperial University, Sendai.

(Comm. by M. FUJIWARA, M.I.A., Nov. 12, 1942.)

In$roduc$ian. In this paper we intend to establish the theory of
Lebesgue integral of the vector lattice valued functions. This subject
has been discussed by Bochner and Izumi. Our consideration differs
from them in that it is based on the notion of semi-ordering,

We define the Lebesgue integral which is analogous to Young,
Daniell, and Banach’s one in real valued functions. It is noteworthy
that the integrable functions are not always approximated by step
functions or Riemann integrable functions, although the integral is
obtained by an extension from step functions or Riemann integrable
functions. This integral includes obviously the Bochner’s and, if we
neglect conditions on the vector lattice, includes the Izumi’s.

And moreover our considerations can be abstracted in that way
which regards the extension of an integral as the extension of a linear
operation between two given vector lattices. This problem has been
treated by Izumi and Nakamura6 in the case of a linear functional.

1. The class To. Let f(t) be an abstract function defined in
abstract space and with range in a complete regular vector lattice L.

We assume that the initial class To of functions is closed with
respect to the operations :cf, f/f2, f f2, fi f2, and that the func-
tions of To are bounded. Further let a functional operation I(f) be
defined on To such that

(A) I(f+f2)=I(f)+I(f2)
(L) If f fi. 2> and limf 0, then lim I(f,3 O.
From these we can easily conclude that

(C) I(cf)=cI(f), where c is a real constant;
(P) If f>__ o, I(f) o.

Then the class To is obviously a lattice. For some instances of the class
To, we may consider the class of step functions or Riemann integrable
functions.

2. Extension to class T from To. If f f2 where f e To,
then limf exists (if we adjoin / to the range), and we define T as
class of such limit functions. For such (fi3 we have I(f3 I(fi)
and then lim I(fi) exists (if allow + as limit).
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49 (1940), p. 209, and Orihara, This Proc. Regurality is used in (4.6) and (4.7) only.
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(2.1) If f =f<=... (fe To) and limfihe To, then
lim I(f) >= I(h)

(2.2) If f<=fi.= ..., gg_ ..., (f,ge To), and

limf. lim g, .then lim I(f,) lim I(g.,)

(2.8) If f =fi. ..., g g ..., (f, g e To), and
limf=limg, then limI(f)=lim I(g)

We define I(f) lim i(f), if T f= lim f,, f e To. Then evidently
(P), (A) and (C) (when c >= 0) are satisfied.

(2.4) If fi _<:_f ..., f e T and limf,=f, then

fe T and I(f)=limI(f).

3. Semi-integrals. For any function f we define

I(f)=/ I(),
where A is taken for all functions e T, such as f. This is called
the upper semi-integral of f. Then we have

(3.1) If c > O (cf)=ci(f)
(3.2) I(f-f) I(f)/I(f)

(3.3) If f g, i(f) i(g).

We define I(f)=-I(f). This is called the lower semi-integral

of fi Similarly we get

(3.4) i(f) >=_/(f).
(3.5) i(fw g)+i(f g) i(f)+(g).

(3.6) [(Ifl)-I_ (Ifl) i(f)-I_(f)
4. Integrability. If I(f) I(f) finite, f is said to be integrable

and we define

I(f)=I(f)=I(f)

which is called the integral of f. Then we can prove the following
theorems.

(4.)
(4.2)
(4.3)

(4.4)
(4.5)
(4.6)

If f 0 is integrable, I(f) O.

If c is a constant and f is integrablc, then cf is integrable.

If f,f are integrable, then j’+t is o and
I(Z+J) I(f) + I(f).

If f is integrable, so is f[ and I(f) l(lfl).
If fi.,f are i..tegrable, so are .f
If I f is a sequence of integ’able functions, and if

limI(f,.) is finite, thcn limf,=f is integrable and

.[(f) im
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While if lim I(f)= + then I(f)
Proof. By -f-f we have I(-f) I(-f). And then

I(f) I(f) for n= 1, 2,

Hence I(f) lim I(f) (1)

This proves the last part of the theorem.
If )f, and l) e T, then I(f)=AI(>). But since L is

regular, there exists enumerable , such tht

z(;’)= h z(;).
If we put g? 1 ,...

then g?>g ..., and g?e T1.

I(g > I(fl)an]

But since A (DI(g )= ];m I(g ),

we get lira I(g)=I(f), and g)f.

Thus for any e > 0 and 11 n N, there exist a U and N, such
that

() ,i(fl)+
2

I(g.,) keU for n > N; g >f,.

Similarly, taking the sequence f-f, f-f, ..., we have

(2)

___
. n2I(g) < I(f-f)+

2
U for > N" ’ >f-f > 0

(3) -e n3I(g) I(-f)+ 2
U for n N" ->-f> 0

If we put

then

But since

we have

Therefore

That is

(2)
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By (1) and (2), we get the integrability of f and

(4.7)

I(f) lim I(f,)

If f,fi., is a sequence of integrable functions with limit f,
and if there exists an integrable function such that
Ifl <= for all n, then f is inegrable and lim I(f)= I(f).

then

and

If we put

g,=f f+l f+,

g. < g,+ < g

>= _>_

Proof.

But since g. is integrable and I(g.) I(v), g is integrable. And
since -g -g+ <= and -f is also integrable, we have I(-f)

lim I(- g).
Then for any e :> 0, and r :> r, there exists a U, and v, such

that
I(g.) I(f)+eU.

And then I(f) I(g) < I(f)+ eU.
In the same manner, if we put

h,.=ff+ f+
then h, h, ,+1 > h.
Therefore hr<:h,.+<: ..., h. is integrable and I(f)=limI(hr). Thus
we have

I(h) > I(f)-eU (r > ’).

If we pu U w U= U,

then lI(f)-I(f) < eU.

Hence lim I(f) exists and equals to I(f).
Summing up above results, we have reached that I(f) satisfied

the conditions (C), (A), (L), (P), and moreover the Lebesgue’s con-
vergence theorem (4.7) and the Fatou-Levi’s theorem (4.6), where the
functions now belong to the class of integrable functions. Thus the
integral I(f) becomes to have right to be called Lebesgue integral.


