26. On a Characterisation of Join Homomorphic Transformation-lattice

By Atuo Komatu.

Mathematical Institute, Osaka Imperial University.

(Comm. by T. Takagi, M.I.A., March 12, 1943.)

1. Introduction. A mapping f of a lattice L_1 into a lattice L_2 is called join homomorphic, when for any elements a, b of L_1 there exists the relation

$$f(a \lor b) = f(a) \lor f(b).$$

This mapping is order preserving, for, if $a > b$ in L_1, it follows $f(a) > f(b)$ in L_2.

If we define $f_1 > f_2$, when for any element a of L_1, $f_1(a) > f_2(a)$ is satisfied, then the set of all join homomorphic transformations forms a partially ordered set $\{f\}$. If L_2 is complete and completely distributive, then $\{f\}$ is a complete lattice. For there exist the following relations for any element a of L_1

$$(f_1 \lor f_2)(a) = f_1(a) \lor f_2(a),$$

$$(\bigvee_X (f_x | X))(a) = \bigvee_X (f_x(a) | X),$$

$$(f_1 \land f_2)(a) = \bigwedge_X (g_x(a) | X),$$

$$(\bigwedge_X (f_x | X))(a) = \bigwedge_Y (h_y(a) | Y),$$

where $\{g_x | x \in X\}$ is the set of all transformations such that $g_x < f_1, f_2$, and $\{h_y | y \in Y\}$ is the set of all transformations such that $h_y < f_x$ for all x of X. This join $f_1 \lor f_2$, meet $f_1 \land f_2$, complete join $\bigvee_X f_x$ and complete meet $\bigwedge_X f_x$ are again clearly join homomorphic transformations.

In this paper we are concerned with the problem of a lattice-theoretic characterisation of this join homomorphic transformation-lattice for the case, when L_2 is the two-element lattice \{0, 1\}.

Lemma 1. All ideals in L form a lattice, which is dual isomorphic with the join homomorphic transformation-lattice $\{f\}$ of L into \{0, 1\}.

Proof. Let f be a join homomorphic mapping of L into \{0, 1\}. Then the set $f^{-1}(0)$ is an ideal in L. For if $a, b \in f^{-1}(0)$, then $f(a \lor b) = f(a) \lor f(b) = 0$; therefore $a \lor b \in f^{-1}(0).$ And if $a \in f^{-1}(0)$, $b < a$, then clearly $f(b) < f(a) = 0$. Hence $f^{-1}(0)$ includes b.

Conversely, let \mathcal{A} be an ideal in L, then the transformation f such that

$$f(a) = 0, \quad a \in \mathcal{A},$$

$$f(a) = 1, \quad a \notin \mathcal{A},$$

is clearly join homomorphic. Hence the correspondence between an ideal \(A \) in \(L \) and a join homomorphic transformation of \(L \) into \(\{0, 1\} \) is one to one.

Furthermore this correspondence is a dual lattice isomorphism. Let \(f_1, f_2 \) be any two such transformations, and let \(A_1, A_2 \) be respectively the ideals \(f_1^{-1}(0), f_2^{-1}(0) \). Now if \((f_1 \cup f_2)(a) = f_1(a) \cup f_2(a) = 0 \), then \(a \) is included in the ideal \(A_1 \cap A_2 \). Conversely, if \(a \in A_1 \cap A_2 \), then \(f_1(a) = f_2(a) = 0 \); therefore

\[
(f_1 \cup f_2)(a) = 0.
\]

Hence

\[
(f_1 \cup f_2)^{-1}(0) = A_1 \cap A_2.
\]

And if \((f_1 \cap f_2)(a) = 0 \), then \(a \) is included in all such ideals \(A \) that \(A \supset A_1, A_2 \), i.e. \(A \supset A_1 \cap A_2 \). When we denote by \(A \cup A \) the least ideal \(B \) such that \(B \supset A_1 \cup A_2 \), i.e. \(A \cup A = \bigwedge A \), then \(a \in A_1 \cup A_2 \). Conversely if \(a \in A_1 \cup A_2 \), then \(a \in B \) for any ideal \(B \). Hence for any transformation \(g_n \) such that \(g_n < f_1, f_2 \), we have \(g_n(a) = 0 \), i.e.

\[
(f_1 \cap f_2)(a) = \bigvee \{ g_n(a) \} = 0.
\]

Therefore we conclude

\[
(f_1 \cap f_2)^{-1}(0) = A_1 \cup A_2.
\]

2. Transformation-lattice.

Lemma 2. Every element \(f \) of \(\{f\} \) has at least one expression as the meet of some meet-irreducible elements.

Proof. Let \(f^{-1}(0) = \{x \mid X\} \), \(A_x = a \cap L \), and let \(f_x \) be the join homomorphic transformation such that

\[
f_x^{-1}(0) = A_x.
\]

Then \(f = \bigwedge f_x \). For from \(f^{-1}(0) \supset f_x^{-1}(0) \) it follows \(f < f_x \), i.e. \(f < \bigwedge f_x \).

And if \(g < \bigwedge f_x \), then \(g^{-1}(0) \supset f_x^{-1}(0) \), i.e. \(g^{-1}(0) \supset \bigwedge A_x = f^{-1}(0) \). Hence \(g < f \). Therefore it must be \(f = \bigwedge f_x \).

Every \(f_x \) is meet-irreducible or finite-meet-reducible into some meet-irreducible elements. For if

\[
f_x = \bigwedge \{ g_y \mid Y \} \quad g_y^{-1}(0) \text{ principal ideal},
\]

then \(f_x < g_y \); hence \(f_x^{-1}(0) = A_x > g_y^{-1}(0) \). If \(A_x = g_y^{-1}(0) \) for all \(y \), then \(A_x = (\bigwedge g_y^{-1}(0)) \). But \(A_x = (\bigwedge g_y^{-1}(0)) \) is the least ideal, which includes all the ideal \(g_y^{-1}(0) \). Whence for some finite elements \(b_x \in g_y^{-1}(0) \)

1) \(A_1 \sim A_2 \) means the set sum of \(A_1 \) and \(A_2 \).

2) \(a \) is said meet-irreducible, when, if \(a = \bigwedge \{ a_x \mid X \} \), then necessarily \(a = a_x \) for some \(x \). See A. Komatu: On a Characterisation of Order Preserving Transformation-lattice. Proc. 19 (1943), 27.

3) \(a \) is said finite-meet-reducible or finite-meet-reducible into meet-irreducible elements, when, if \(a = \bigwedge \{ a_x \mid X \} \) with meet-irreducible elements \(a_x \), then \(a = a_{x_1} \cdots a_{x_m} \) for some finite subset \(x, \ldots, x_n \) of \(X \).
(j=1, 2, ..., n) it must be \(a_x < b_{y_1} \cup \cdots \cup b_{y_n}\).

Therefore \(\mathbb{A}_x < (\bigcap_j g_{y_j})^{-1}(0)\), i.e. \(\mathbb{A}_x = \bigcup_j g_{y_j}(0)\).

This shows easily that \(f_x\) is finite-meet-reducible into some meet-irreducible elements.

Lemma 3. The subset \(L\)' of all meet-irreducible elements and all meet-finite-reducible elements in \(\{f\}\) forms a lattice, which is dual isomorphic with \(L\).

Proof. Let \(f\) be a meet-irreducible element or a finite-meet-reducible element, i.e. \(f \in L\)', and let \(f^{-1}(0) = \{a_x \mid X\} \) and \(a_x \cap L = \mathbb{A}_x\). Let \(f_{x_1}\) be the transformation such that \(f_{x_1}^{-1}(0) = \mathbb{A}_{x_1}\), then \(f = \bigcap f_{x_1}\) as in lemma 2.

From the finite-meet-reducibility of \(f\) we can prove easily

\[f = f_{x_1} \cap \cdots \cap f_{x_n}\]

Whence \(f^{-1}(0)\) is the least ideal which includes \(f_{x_i}^{-1}(0) = \mathbb{A}_{x_i}\) \((i = 1, 2, \ldots, n)\). Therefore \(f^{-1}(0)\) is the principal ideal

\[(a_{x_1} \cup \cdots \cup a_{x_n}) \cap L.\]

From lemma 1 and 2 we conclude that \(L\) is dually lattice isomorphic with \(L\).

Lemma 4. Join in \(\{f\}\) is continuous with respect to the generalizd \((\sigma)\) topology\(^1\) of \(\{f\}\). Meet is not necessarily continuous.

Proof. Let a directed set of elements \(\{f_x \mid X\}\) converge to \(f\). Then there exist two directed sets of elements \(\{\varphi_x \mid X\}, \{\psi_x \mid X\}\) such that

\[
\begin{align*}
\varphi_{x_1} &< \varphi_{x_2}, \quad \text{for } x_1 < x_2 \text{ in } X, \\
\psi_{x_1} &> \psi_{x_2}, \\
\varphi_x &< f_x < \psi_x \quad \text{for any } x \in X,
\end{align*}
\]

and

\[
\bigcup_X \{\varphi_x \mid x \in X\} = \lim_f = \bigcap_X \{\psi_x \mid x \in X\}.
\]

Hence for any element \(g\) of \(\{f\}\)

\[
(1) \quad \left\{ \begin{array}{l}
\varphi_{x_1} \cup g < \varphi_{x_2} \cup g \\
\varphi_{x_1} \cup g > \varphi_x \cup g \\
\varphi_x \cup g < f_x \cup g < \psi_x \cup g
\end{array} \right\} \quad \text{for any } x_1 < x_2 \text{ in } X,
\]

\[
(2) \quad \left(\bigcup_X (\varphi_x \mid X) \right) \cup g = (\lim_f) \cup g = \left(\bigcap_X (\psi_x \mid X) \right) \cup g.
\]

It is clear that \(\bigcup_X \varphi_x \cup g = \bigcup_X (\varphi_x \cup g)\). Furthermore we can prove easily \(\bigcap_X \psi_x \cup g = \bigcap_X (\psi_x \cup g)\). For if \(a \in \left(\bigcap_X (\psi_x \cup g) \right)\), then \(a \in (\bigcap_X (\psi_x \cup g))^{-1}(0)\) and \(a \in g^{-1}(0)\); by the first relation it follows \(a < a_{x_1} \cup \cdots \cup a_{x_n}\) for some finite \(a_{x_i} \in \varphi_{x_i}^{-1}(0)\) \((i = 1, \ldots, n)\). Let \(x\) be an

element of X such that for every $x_i \geq x_0$, then $\varphi_x < \varphi_{x_0}$, i.e. $\varphi_x^{-1}(0) \geq \varphi_{x_0}^{-1}(0)$. Hence every a_{x_i} is included in the ideal $\varphi_x^{-1}(0)$ and so is a. Therefore we conclude for this a that $a \in (\varphi_x \cup g)^{-1}(0) < \bigcup_{x} \left((\varphi_x \cup g)^{-1}(0) \right)$, i.e. $(\bigcap_{x} \varphi_x) \cup g \geq \bigcap_{x} (\varphi_x \cup g)$.

The inverse order is obvious from $\varphi_x \cup g \geq (\bigcap_{x} \varphi_x) \cup g$, hence

$$\bigcap_{x} \varphi_x) \cup g = \bigcap_{x} (\varphi_x \cup g).$$

The formula (2) now takes the form

$$\bigcup_{x} (\varphi_x \cup g) = (\lim f_x) \cup g = \bigcap_{x} (\varphi_x \cup g).$$

From (1) and (3) we see that $\lim (f_x \cup g) = (\lim f_x) \cup g$, i.e. $\{f_x \cup g \mid X\}$ converges to $f \cup g$.

3. Characterisation of the transformation-lattice.

Lemma 5. Let L^* be a lattice with the following properties:

i) complete, ii) every element a is a meet of meet-irreducible elements, iii) join is continuous with respect to the generalized (o)-topology of L^*.

Then, if $a = \bigcap_{x} a_x = \bigcap_{y} b_y$ are any two reductions of a into infinite meet-irreducible components, we can select for every y suitably some finite x_i ($i=1, 2, \ldots, n$) such that

$$b_y \geq a_{x_1} \cap \cdots \cap a_{x_n}$$

and for every x some finite y_j ($j=1, 2, \ldots, m$) such that

$$a_x \geq b_{y_1} \cap \cdots \cap b_{y_m}.$$

Proof. Let I' be the set of all finite subsets $\{a\}$ of X, then I' is a directed set. If $a = \{x_1, x_2, \ldots, x_n\}$ and $a_a = a_{x_1} \cap \cdots \cap a_{x_n}$, then for $a < \beta$ in I' we have $a_a > a_{x_i}$ in L^*.

Clearly $a < a_{x_i}$ for every $a \in I'$; hence

$$a < \bigcap_{x} a_x.$$ But if we select $a_{x_i} \in I'$ suitably for every $x \in X$ such that $x \in a_{x_i}$, then $a_x > a_{x_{x_i}}$ in L^*; hence

$$a = \bigcap_{x} a_x > \bigcap_{x} a_{x_{x_i}} > \bigcap_{a_x} a_x.$$ From (4) and (5) it follows that the directed set of elements $\{a_{x_i} \mid I'\}$ converges to a. From the property iii) of L^*

$$b_y = b_y \cup a = b_y \cup (\bigcap_{x} a_x) = \bigcap_{a_x} (a_{x} \cup b_y).$$

From the property ii)

$$a_x \cup b_y = \bigcap_{z_x} c_z,$$

i.e. $b_y = \bigcap_{a_x \in I'} (\bigcap_{z_x} c_z)$. But b_y is meet-irreducible, hence $b_y = c_z > a_x \cup b_y$

for some $z \in Z_a$.

Therefore it must be $b_y = a_x \cup b_y$, i.e.
Similarly we can prove for every x with some finite y_j ($j=1,2,...,m$) $a_x > b_y, \bigcap \cdots \bigcap b_{y_m}$.

Theorem. Let L^* be a lattice with the following properties:

i) complete

ii) every element a is a meet of meet-irreducible elements.

iii) join is continuous with respect to the generalized (o)-topology of L^*.

iv) the set L of all meet-irreducible elements and all finite-meet-reducible elements forms a lattice with the (relative) order of L^*. Then L^* is isomorphic with the join homomorphic transformation-lattice of L' into \{0,1\}, where L' is dual isomorphic to the lattice L.

Proof. (1) One to one Correspondence.

Let $a = \bigcap X a_x$ be an expression of a with meet-irreducible elements \{$a_x \mid X$\}. Let $a'_x \in L'$ be the element which corresponds to $a_x \in L$, and let f_x be the join homomorphic mapping of L' into \{0,1\} such that

$$f_x^{-1}(0) = a'_x \bigcap L' = \forall x.'$$

Let f be the mapping of L' into \{0,1\} such that

$$f^{-1}(0) = \bigvee X \forall x.$$

Now we consider the correspondence $a \rightarrow f$. Clearly $a_x \rightarrow f_x$. This correspondence is uniquely determined. For if $a = \bigcap X a_x = \bigcap Y b_y$, then from lemma 5 for every y with some $x \in X$ ($i=1,2,...,n$)

$$b_y > a_{x_i} \bigcap \cdots \bigcap a_{x_n}.$$

Hence b_y is included in the ideal $\forall a_{x_i} \bigcap L' = \forall a_{x_i}'$, i.e.

$$\forall y' = b_y \bigcap L' \subset \bigvee_i \forall a_{x_i}'.$$

Similarly for every $x' \forall x' < \bigvee \forall y'$, whence

$$\forall x' = \forall y'.$$

This correspondence is one to one. For if $a = \bigcap X a_x, b = \bigcap Y b_y$, $a = b$, then at least for one a_x (or b_y) there exist no finite subsets y_1,\ldots,y_m (or x_1,\ldots,x_n) such that

$$a_x > b_{y_1} \bigcap \cdots \bigcap b_{y_m}.$$

Hence in L' $a_x \notin \bigvee Y \forall y'$, therefore

$$f_x^{-1}(0) = f_y^{-1}(0), \text{ i.e. } f_x = f_y.$$

(2) Let f be a join homomorphic transformation of L' into \{0,1\}, and let $f^{-1}(0) = \forall x' = \forall a_{x'} \bigcap L'$. Clearly

$$\forall x' = \bigvee X \forall x' = \bigvee Y (a_{x'} \bigcap L').$$

From completeness of L^* there exists an element a such that
Hence $a \rightarrow f$.

(3) Meet homomorphism.
Let $a = \bigwedge_x a_x$, $b = \bigwedge_y b_y$, then $a \land b = (\bigwedge_x a_x) \land (\bigwedge_y b_y)$: Let f_a, f_b and $f_{a \land b}$ be respectively the following mappings of L' into $\{0, 1\}$ such that $f_a^{-1}(0) = \bigvee_x (a' \land L')$, $f_b^{-1}(0) = \bigvee_y (b' \land L')$, $f_{a \land b}^{-1}(0) = \bigvee_{x,y} \{(a_x \land L'), (b'_y \land L')\}$, then clearly $f_{a \land b} = f_a \land f_b$.

The last formula follows from the relation $\bigvee_{x,y} \{(a_x \land L'), (b'_y \land L')\} = \left(\bigvee_x (a'_x \land L')\right) \cup \left(\bigvee_y (b'_y \land L')\right)$.

We can easily prove from 1)-3) that this correspondence is isomorphic.

Corollary. The lattice L of all join homomorphic transformations of finite lattice L' into $\{0, 1\}$ is dual isomorphic to L'.