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24. Some Metrical Theorems on a Set of Points.

By Masatsugu TsuslL
Mathematical Institute, Tokyo Imperial University.
(Comm. by T. YosiE, MI.A., March 12, 1943.)

In this note we will prove some theorems on measurable sets of
points.

Theorem I. Let E be a measurable set in an n-dimensional space.
We translate E by a vector t and E+t be the translated set. Then

lim mE (E+t)=mE . 1
Iel>0

W.H. Young® proved the case n=1.

Proof. We prove the case n=2; the other case can be proved
similarly. Let E be a measurable set on the xy-plane and ¢(x,y) be
its characteristic function, then ¢(x—#h, y—k) is the characteristic func-
tion of _E_'-_l—_t,_ where (k, k) are the components of r, so that t=(h, k),
|t |=v B+ E

(i) First we assume mE << . Then

mE= Lo j_w“’("”’ y)dzdy = Lo j:nsoz(x, y)dzdy ,
mEE+0)=(__|" olo, vypc—h,y—k)dady,
so that

|mE(E+x)—mE|= l S:o siw“’(”’ v) (ple—h, y—h) — oz, ) dedy 1§

j:. f:.,l plz—h, y—k)—¢lx, y) | dzdy .
Since by Lebesgue’s theorem?,

igljgwj_ijl pla—h, y—k)—¢(x, y) | dedy=0,
we have nlrir!—?o mE(E+x)=mkE.

(ii) If mE=o, let E, be a bounded sub-set of E, such that
N<mE;< . Then by (i), for any , such that |t|<p mE(E+1)=>
%Eagg , 5o that mE(E+r)ng1(E1+r)g-2’—. Since N can be
taken arbitrarily large, we have llrlll-l)lo E(E+r)=, qg.e.d.

Theorem II. Let E; and E, be measurable sets in an n-dimensional
space and one of mE,, mE, be finite. Then

Iljlt-g) mEl(E2+ I') = ME] . Ez) . (2)

1) W.H. Young: On a class of parametric integrals and their application in the
theory of Fourier series. Proe. Royal Soc. (London) A. 85 (1911).
2) Lebesgue: Lecons sur les séries trigonométriques. p. 15.
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Proof. We prove the case n=2. Let E, and E; be measurable
sets on the xy-plane and ¢(x, ), ¢.(x,y) be the characteristic functions
of E; and E, respectively and t=(h, k).

(i) We first assume mE; << . Then

m(E-Ey=[" (" oo, vyoue, vy,
mEE+0)=("_[” o, vhofa—h, y—kyindy,
so that

| mE B+ -m(E B = ([ @) te—hy—0)— o) dady|<

j:, j:l ez —h, y—k)— o, y) | dady .

Hence as before we have Iligno mE(Ey+x)=m(E,- E,).

(ii) If mE,<oo, then mE(E,+1t)=m(E;—1)E, so that this case
reduces to (i), q.e. d.

Hence if we put ¢(h, k)=mE(E,+1), then ¢(h,k) is a continuous
function of (h, k).

Remark. The theorem is not true, if mE,= o, mE,=x. To see
this, we take for E; the upper half-plane y =0 and for E, the lower
half-plane ¥ < 0. Then m(E;-Ey)=0. If we translate E;, in the direc-
tion of the positive y-axis, and let E:+y be the translated set. Then
mE(Ex+y)=co for any y>0.

Theorem III. Let E: and E, be measurable sets in an n-dimensional
space and mE, >0, mE;>0. Then we can translate E, suitably, such
that

mE(E>+1) >0, 3)

Fukamiya® proved the case n=1.

Proof. We prove the case n=2. Let F, and E, be measurable
sets on the zy-plane and ¢:(z, y), v:(x, ¥) be the characteristic functions
of E; and E; respectively and t=(h, k).

(i) First we assume mE; <<, mE;<<o. Then by Theorem II,

oih, 1) =mEE+)={"_(" oo, yyodo—h,y—Ddady
is a continuous function of (, k), so that by Fubini’s theorem,

j':, jf“¢(h, k)dhdk= J.:’ r_ﬂ w{ﬂl(x, y)dxdy f:o I:o‘pz(x_ h, y—k)dhdk

=S:, 5 " piw, y)dady j‘”& j_ﬂ(h, K)dhdk=mE,-mE,>0.

Hence ¢(ho, ko) =mE\(Ez+15) > 0 for a suitable o= (hy, ko).
(i) In the general case, we take bounded sub-sets E{ of E,
and E; of E; such that 0 <mE{ <<, 0<<mEj<<co, then by (i),

3) M. Fukamiya: Sur une propriété des ensembles measurables. Seci. Rep. Tohoku
Imp. Univ. 24 (1935).
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mE{(E;+1) >0 for a suitable t,=(hg, ko), so that mE(E,+1) >
mE{(Es+1) >0, q.e.d.

Theorem IV (Steinhaus)®. Let E be a measurable set in an n-
dimensional space and mE>0. Let acFE, beE. We translate the

vector ab, such that its initial point a coincides with the origin of the
coordinates and t(a,b) be the translated vector. Let E, be the set of
end points of t(a,b). Then E, contains a certain n-dimensional sphere
about the origin.

Proof. By Theorem I, for any vector r, such that |t|<<p,
mE(E+1t)>0, so that E(E+r)==0. Hence there are two points,
acE, b=a+reE, so that E; contains a sphere of radius g about the
origin, q.e. d.

Theorem V (Steinhaus)®. Let E, and E, be measurable sets in an
n-dimenstonal space and mE, >0, mE,>0 and E, be the set of end
points of r(a,b), where aeE, beE, Then E, contains a certain n-
dimensional sphere.

Proof. By Theorem III, mEy(E;+ 1)) >0 for some vo=(ho, ko). Let
E’'=E\(E;+1,) and Ej be the set of end points of x(a,d), where aecE’,
beE’. Then by Theorem IV, Ej contains a certain n-dimensional
sphere K of radius p about the origin. Hence for any r, such that
|t]<<p, there are two points aeE’, b=a+reE’. Since aeE+rt,

s
there exists a point a,€E; such that a=a;,+1, so that a,b=1+7,.
Hence E; contains a sphere K41, q.e. d.

Theorem VI. Let Ey and E, be measurable sets in an n-dimensional
space and mEy;=mE, Then we can decompose E, and E, such that

E=P+31d7,  B=dP+34”,

where me®=0, me®=0 and €™ is congruent with & by a translation.
Fukamiya® proved the case n=1,

Proof. We prove the case n=2. Let E; and E; be measurable
sets on the zy-plane.

(i) First we assume that E; and E, are bounded, so that E, and
E, are contained in a square: |x|<<L, |y|<<L. Let oz, ), ¢, y)
be the characteristic functions of E; and E; respectively and t=(h, k)
be such a vector, that |h| < 2L, | k| <2L. We put

o, By =mEEt =" [" o, )ta—h, y—R)dody .

Since ¢, y)=0 for |x| = L, |y| = L, we have by Fubini’s theorem,
ey drdk=\" | O
s—zL j_u‘“"' k) _L» j_mﬁ(a, y)da yj_ﬂl j_ugl/z z—h, y—k)

= Kl ﬁﬂ%(x. y)dxdy s:ﬂ I:wz(h, k)dhdk=mEmE,=(mE)*. (4)

4), 5) Steinhaus: Sur les distances des points des ensembles de measure positive.
Fund. Math. 1 (1920), Rademacher: Uber einc Eigenschaft von messbaren Mengen
positiven Masses. Jahresbericht d. D. M. V. 30 (1921).

6) M. Fukamiya, l.c. 3).
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Let M=Max.¢(h,k) for |h| < 2L, | k| < 2L, then (4LPM = (mEy),

or M= %’1%‘%%, so that there exists a veetor vo=(he, ko), such that
2
Ylho, ko) =mEy(Bp10) = EY e put
(4L)

P =Ey(E;+1)) ’ &’=E\(E;+1)—1, } ®)

EPP=E,—¢’, EP=E,—d¢P.
Then € is congruent with & by a translation r, and

mEP=mEP < mE;—im—E‘X . (6)

4Ly
If mE{® >0, then we apply the same operation on E{ and E and
obtain E?, E®, ¢?, ¢?, such that e{® is eongruent with & and

mE§”=ME§”§mE{"——(%§;¥. D

Repeating the similar operations, after n steps, we obtain E{™, EY®,
&™, e, where ¢{™ is congruent with ¢f by a translation and

w— n) a-n_ (ME{ D)
mE =mE < mEY 77 ®)

Since mE{™ decreases with =, let d=li_)n°1° mE{™, then we have from
®), d<d—%_, so that d=limmE®=0. Hence if we put o=
(4L)2 n>o0

lim E{™, &”=1lim E$”, we have
n-»oo n oo
E=d>+3d”, EB=d’+3 4, ©)

where me®=0, mef’=0, and ™ is congruent with &™ by a trans-
lation.

(ii) In the general case, let mE,=mEz=gl77.. (7.>0), where we
take 7,=1, if mE,=mE;=c. Then we can decompose E; and E;
into bounded sub-sets, E{™ and E$®, such that

E=3Er, E=3E", (10)
where mE{™=mE§®=7,. To see this, let Q:|z|<L, |y|<L be a
square and we determine L, so that mE,Q=7+---+7%, and put E{®=
E(Qn—Q,—;). Then mE{™=y, and E1=2_:1E'i"’- Similarly we have
E’2=§1 E®™, mE§V=y,. Since by (i), we can decompose E{” and E™

into congruent sub-sets, we can decompose E; and E; into congruent
sub-sets as stated in the Theorem, g.e.d.



