24. Some Metrical Theorems on a Set of Points.

By Masatsugu TSUJI.

Mathematical Institute, Tokyo Imperial University. (Comm. by T. YOSIE, M.I.A., March 12, 1943.)

In this note we will prove some theorems on measurable sets of points.

Theorem I. Let E be a measurable set in an n-dimensional space. We translate E by a vector r and E+r be the translated set. Then

$$\lim_{|\mathbf{x}|\to 0} mE(E+\mathbf{x}) = mE.$$
 (1)

W. H. Young¹⁾ proved the case n=1.

Proof. We prove the case n=2; the other case can be proved similarly. Let E be a measurable set on the xy-plane and $\varphi(x, y)$ be its characteristic function, then $\varphi(x-h, y-k)$ is the characteristic function of $E+\mathfrak{r}$, where (h, k) are the components of \mathfrak{r} , so that $\mathfrak{r}=(h, k)$, $|\mathfrak{r}|=\sqrt{h^2+k^2}$.

(i) First we assume $mE < \infty$. Then

$$mE = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi(x, y) dx dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi^{2}(x, y) dx dy ,$$

$$mE(E+\mathbf{x}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi(x, y) \varphi(x-h, y-k) dx dy ,$$

so that

$$|mE(E+\mathbf{r})-mE| = \left| \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi(x, y) \left(\varphi(x-h, y-h) - \varphi(x, y) \right) dx dy \right| \leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |\varphi(x-h, y-k) - \varphi(x, y)| dx dy.$$

Since by Lebesgue's theorem²⁾,

$$\lim_{k^2+k^2\to 0}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}|\varphi(x-h, y-k)-\varphi(x, y)|\,dxdy=0\,,$$

we have $\lim_{|\mathfrak{r}|\to 0} mE(E+\mathfrak{r}) = mE$.

(ii) If $mE = \infty$, let E_1 be a bounded sub-set of E, such that $N \leq mE_1 < \infty$. Then by (i), for any r, such that $|r| < \rho$ $mE_1(E_1+r) \geq \frac{mE_1}{2} \geq \frac{N}{2}$, so that $mE(E+r) \geq mE_1(E_1+r) \geq \frac{N}{2}$. Since N can be taken arbitrarily large, we have $\lim_{|r| \to 0} E(E+r) = \infty$, q. e. d.

Theorem II. Let E_1 and E_2 be measurable sets in an n-dimensional space and one of mE_1 , mE_2 be finite. Then

$$\lim_{|\mathfrak{r}|\to 0} m E_1(E_2 + \mathfrak{r}) = m(E_1 \cdot E_2) .$$
 (2)

¹⁾ W.H. Young: On a class of parametric integrals and their application in the theory of Fourier series. Proc. Royal Soc. (London) A. 85 (1911).

²⁾ Lebesgue: Lecons sur les séries trigonométriques. p. 15.

No. 3.]

Proof. We prove the case n=2. Let E_1 and E_2 be measurable sets on the *xy*-plane and $\varphi_1(x, y)$, $\varphi_2(x, y)$ be the characteristic functions of E_1 and E_2 respectively and $\mathfrak{r}=(h, k)$.

(i) We first assume $mE_2 < \infty$. Then

$$m(E_1 \cdot E_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi_1(x, y) \varphi_2(x, y) dx dy ,$$
$$mE_1(E_2 + \mathbf{r}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi_1(x, y) \varphi_2(x - h, y - k) dx dy ,$$

so that

$$|mE_1(E_2+\mathfrak{r})-m(E_1\cdot E_2)|=\Big|\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\varphi_1(x,y)\Big(\varphi_2(x-h,y-k)-\varphi_2(x,y)\Big)dxdy\Big|\leq \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}|\varphi_2(x-h,y-k)-\varphi_2(x,y)|dxdy.$$

Hence as before we have $\lim mE_1(E_2+r) = m(E_1 \cdot E_2)$.

(ii) If $mE_1 < \infty$, then $mE_1(E_2+r) = m(E_1-r)E_2$, so that this case reduces to (i), q. e. d.

Hence if we put $\psi(h, k) = mE_1(E_2 + r)$, then $\psi(h, k)$ is a continuous function of (h, k).

Remark. The theorem is not true, if $mE_1 = \infty$, $mE_2 = \infty$. To see this, we take for E_1 the upper half-plane $y \ge 0$ and for E_2 the lower half-plane $y \le 0$. Then $m(E_1 \cdot E_2) = 0$. If we translate E_2 in the direction of the positive y-axis, and let E_2+y be the translated set. Then $mE_1(E_2+y) = \infty$ for any y > 0.

Theorem III. Let E_1 and E_2 be measurable sets in an n-dimensional space and $mE_1 > 0$, $mE_2 > 0$. Then we can translate E_2 suitably, such that

$$mE_1(E_2+r_0) > 0$$
. (3)

Fukamiya¹⁾ proved the case n=1.

Proof. We prove the case n=2. Let E_1 and E_2 be measurable sets on the xy-plane and $\varphi_1(x, y)$, $\varphi_2(x, y)$ be the characteristic functions of E_1 and E_2 respectively and r = (h, k).

(i) First we assume $mE_1 < \infty$, $mE_2 < \infty$. Then by Theorem II,

$$\psi(h,k) = mE_1(E_2+r) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi_1(x,y)\varphi_2(x-h,y-k)dxdy$$

is a continuous function of (h, k), so that by Fubini's theorem,

$$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\varphi(h,k)dhdk = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\varphi_{1}(x,y)dxdy \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\varphi_{2}(x-h,y-k)dhdk$$
$$= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\varphi_{1}(x,y)dxdy \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\varphi_{2}(h,k)dhdk = mE_{1}\cdot mE_{2} > 0.$$

Hence $\psi(h_0, k_0) = mE_1(E_2 + r_0) > 0$ for a suitable $r_0 = (h_0, k_0)$.

(ii) In the general case, we take bounded sub-sets E'_1 of E_1 and E'_2 of E_2 , such that $0 < mE'_1 < \infty$, $0 < mE'_2 < \infty$, then by (i),

³⁾ M. Fukamiya: Sur une propriété des ensembles measurables. Sci. Rep. Tohoku Imp. Univ. 24 (1935).

 $mE'_1(E'_2+r_0) > 0$ for a suitable $r_0 = (h_0, k_0)$, so that $mE_1(E_2+r_0) \ge mE'_1(E'_2+r_0) > 0$, q.e.d.

Theorem IV (Steinhaus)⁴⁾. Let E be a measurable set in an ndimensional space and mE > 0. Let $a \in E$, $b \in E$. We translate the vector \overrightarrow{ab} , such that its initial point a coincides with the origin of the coordinates and $\mathfrak{r}(a, b)$ be the translated vector. Let E_0 be the set of end points of $\mathfrak{r}(a, b)$. Then E_0 contains a certain n-dimensional sphere about the origin.

Proof. By Theorem I, for any vector r, such that $|r| < \rho$, mE(E+r) > 0, so that $E(E+r) \neq 0$. Hence there are two points, $a \in E$, $b=a+r \in E$, so that E_0 contains a sphere of radius ρ about the origin, q. e. d.

Theorem V (Steinhaus)⁵⁾. Let E_1 and E_2 be measurable sets in an n-dimensional space and $mE_1 > 0$, $mE_2 > 0$ and E_0 be the set of end points of x(a, b), where $a \in E_1$, $b \in E_2$. Then E_0 contains a certain n-dimensional sphere.

Proof. By Theorem III, $mE_1(E_2+r_0) > 0$ for some $r_0 = (h_0, k_0)$. Let $E' = E_1(E_2+r_0)$ and E'_0 be the set of end points of r(a, b), where $a \in E'$, $b \in E'$. Then by Theorem IV, E'_0 contains a certain *n*-dimensional sphere K of radius ρ about the origin. Hence for any r, such that $|r| < \rho$, there are two points $a \in E'$, $b = a + r \in E'$. Since $a \in E_2 + r_0$, there exists a point $a_1 \in E_2$, such that $a = a_1 + r_0$, so that $a_1 = r + r_0$. Hence E_0 contains a sphere $K + r_0$, q. e. d.

Theorem VI. Let E_1 and E_2 be measurable sets in an n-dimensional space and $mE_1=mE_2$. Then we can decompose E_1 and E_2 , such that

$$E_1 = e_1^{(0)} + \sum_{n=1}^{\infty} e_1^{(n)}, \qquad E_2 = e_2^{(0)} + \sum_{n=1}^{\infty} e_2^{(n)},$$

where $me_1^{(0)} = 0$, $me_2^{(0)} = 0$ and $e_1^{(n)}$ is congruent with $e_2^{(n)}$ by a translation. Fukamiya⁶ proved the case n=1.

Proof. We prove the case n=2. Let E_1 and E_2 be measurable sets on the xy-plane.

(i) First we assume that E_1 and E_2 are bounded, so that E_1 and E_2 are contained in a square: |x| < L, |y| < L. Let $\varphi_1(x, y)$, $\varphi_2(x, y)$ be the characteristic functions of E_1 and E_2 respectively and $\mathfrak{r} = (h, k)$ be such a vector, that $|h| \leq 2L$, $|k| \leq 2L$. We put

$$\psi(h,k) = mE_1(E_2+r) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi_1(x,y)\varphi_2(x-h,y-k)dxdy.$$

Since $\varphi_2(x, y) = 0$ for $|x| \ge L$, $|y| \ge L$, we have by Fubini's theorem,

$$\int_{-2L}^{2L} \int_{-2L}^{2L} \varphi(h, k) dh dk = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi_1(x, y) dx dy \int_{-2L}^{2L} \int_{-2L}^{2L} \psi_2(x - h, y - k) dh dk$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi_1(x, y) dx dy \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi_2(h, k) dh dk = mE_1 mE_2 = (mE_1)^2. \quad (4)$$

4), 5) Steinhaus: Sur les distances des points des ensembles de measure positive. Fund. Math. 1 (1920), Rademacher: Über eine Eigenschaft von messbaren Mengen positiven Masses. Jahresbericht d. D. M. V. 30 (1921).

6) M. Fukamiya, l. c. 3).

Let $M = \operatorname{Max} \psi(h, k)$ for $|h| \leq 2L$, $|k| \leq 2L$, then $(4L)^2 M \geq (mE_1)^2$, or $M \geq \frac{(mE_1)^2}{(4L)^2}$, so that there exists a vector $\mathfrak{r}_0 = (h_0, k_0)$, such that $\psi(h_0, k_0) = mE_1(E_2 + \mathfrak{r}_0) \geq \frac{(mE_1)^2}{(4L)^2}$. We put $e_1^{(1)} = E_1(E_2 + \mathfrak{r}_0)$, $e_2^{(1)} = E_1(E_2 + \mathfrak{r}_0) - \mathfrak{r}_0$, $E_1^{(1)} = E_1 \rightarrow e_1^{(1)}$, $E_2^{(1)} = E_2 - e_2^{(1)}$. (5)

Then $e_1^{(1)}$ is congruent with $e_2^{(1)}$ by a translation r_0 and

$$mE_1^{(1)} = mE_2^{(1)} \le mE_1 - \frac{(mE_1)^2}{(4L)^2}$$
. (6)

If $mE_1^{(1)} > 0$, then we apply the same operation on $E_1^{(1)}$ and $E_2^{(1)}$ and obtain $E_1^{(2)}, E_2^{(2)}, e_1^{(2)}, e_2^{(2)}$, such that $e_1^{(2)}$ is congruent with $e_2^{(2)}$ and

$$mE_1^{(2)} = mE_2^{(2)} \le mE_1^{(1)} - \frac{(mE_1^{(1)})^2}{(4L)^2}.$$
 (7)

Repeating the similar operations, after *n* steps, we obtain $E_1^{(n)}, E_2^{(n)}, e_1^{(n)}, e_2^{(n)}$, where $e_1^{(n)}$ is congruent with $e_2^{(n)}$ by a translation and

$$mE_1^{(n)} = mE_2^{(n)} \leq mE_1^{(n-1)} - \frac{(mE_1^{(n-1)})^2}{(4L)^2}.$$
 (8)

Since $mE_1^{(n)}$ decreases with *n*, let $d = \lim_{n \to \infty} mE_1^{(n)}$, then we have from (8), $d \leq d - \frac{d^2}{(4L)^2}$, so that $d = \lim_{n \to \infty} mE_1^{(n)} = 0$. Hence if we put $e_1^{(0)} = \lim_{n \to \infty} E_1^{(n)}$, $e_2^{(0)} = \lim_{n \to \infty} E_2^{(n)}$, we have

$$E_1 = e_1^{(0)} + \sum_{n=1}^{\infty} e_1^{(n)}, \qquad E_2 = e_2^{(0)} + \sum_{n=1}^{\infty} e_2^{(n)}, \qquad (9)$$

where $me_1^{(0)}=0$, $me_2^{(0)}=0$, and $e_1^{(n)}$ is congruent with $e_2^{(n)}$ by a translation.

(ii) In the general case, let $mE_1 = mE_2 = \sum_{n=1}^{\infty} \eta_n$ ($\eta_n > 0$), where we take $\eta_n = 1$, if $mE_1 = mE_2 = \infty$. Then we can decompose E_1 and E_2 into bounded sub-sets, $E_1^{(n)}$ and $E_2^{(n)}$, such that

$$E_1 = \sum_{n=1}^{\infty} E_1^{(n)}, \qquad E_2 = \sum_{n=1}^{\infty} E_2^{(n)}, \qquad (10)$$

where $mE_1^{(n)} = mE_2^{(n)} = \eta_n$. To see this, let $Q: |x| \leq L$, $|y| \leq L$ be a square and we determine L, so that $mE_1Q = \eta_1 + \cdots + \eta_n$ and put $E_1^{(n)} = E_1(Q_n - Q_{n-1})$. Then $mE_1^{(n)} = \eta_n$ and $E_1 = \sum_{n=1}^{\infty} E_1^{(n)}$. Similarly we have $E_2 = \sum_{n=1}^{\infty} E_2^{(n)}$, $mE_2^{(n)} = \eta_n$. Since by (i), we can decompose $E_1^{(n)}$ and $E_2^{(n)}$ into congruent sub-sets, we can decompose E_1 and E_2 into congruent sub-sets as stated in the Theorem, q. e. d.