24. Some Metrical Theorems on a Set of Points.

By Masatsugu TsujI.
Mathematical Institute, Tokyo Imperial University. (Comm. by T. Yosie, m.I.A., March 12, 1943.)

In this note we will prove some theorems on measurable sets of points.

Theorem I. Let E be a measurable set in an n-dimensional space. We translate E by a vector \mathfrak{r} and $E+\mathrm{r}$ be the translated set. Then

$$
\begin{equation*}
\lim _{|\mathrm{r}| \rightarrow 0} m E(E+\mathfrak{r})=m E . \tag{1}
\end{equation*}
$$

W. H. Young ${ }^{1)}$ proved the case $n=1$.

Proof. We prove the case $n=2$; the other case can be proved similarly. Let E be a measurable set on the $x y$-plane and $\varphi(x, y)$ be its characteristic function, then $\varphi(x-h, y-k)$ is the characteristic function of $E+\mathfrak{r}$, where (h, k) are the components of \mathfrak{r}, so that $\mathfrak{r}=(h, k)$, $|\mathfrak{r}|=\sqrt{h^{2}+k^{2}}$.
(i) First we assume $m E<\infty$. Then

$$
\begin{aligned}
& m E=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi(x, y) d x d y=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi^{2}(x, y) d x d y, \\
& m E(E+\mathfrak{r})=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi(x, y) \varphi(x-h, y-k) d x d y
\end{aligned}
$$

so that

$$
\begin{gathered}
|m E(E+\mathrm{r})-m E|=\left|\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi(x, y)(\varphi(x-h, y-h)-\varphi(x, y)) d x d y\right| \leqq \\
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|\varphi(x-h, y-k)-\varphi(x, y)| d x d y
\end{gathered}
$$

Since by Lebesgue's theorem ${ }^{2}$,

$$
\lim _{h^{2}+k^{2} \geqslant 0} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|\varphi(x-h, y-k)-\varphi(x, y)| d x d y=0
$$

we have $\lim _{\mid \mathrm{rr} \rightarrow 0} m E(E+\mathfrak{r})=m E$.
(ii) If $m E=\infty$, let E_{1} be a bounded sub-set of E, such that $N \leqq m E_{1}<\infty$. Then by (i), for any \mathfrak{r}, such that $|\mathfrak{r}|<\rho m E_{1}\left(E_{1}+\mathfrak{r}\right) \geqq$ $\frac{m E_{1}}{2} \geqq \frac{N}{2}$, so that $m E(E+r) \geqq m E_{1}\left(E_{1}+r\right) \geqq-\frac{N}{2}$. Since N can be taken arbitrarily large, we have $\lim _{|\mathrm{r}| \rightarrow 0} E(E+\mathrm{r})=\infty$, q.e.d.

Theorem II. Let E_{1} and E_{2} be measurable sets in an n-dimensional space and one of $m E_{1}, m E_{2}$ be finite. Then

$$
\begin{equation*}
\lim _{\mid \mathrm{rl} \rightarrow 0} m E_{1}\left(E_{2}+\mathfrak{r}\right)=m\left(E_{1} \cdot E_{2}\right) . \tag{2}
\end{equation*}
$$

[^0]Proof. We prove the case $n=2$. Let E_{1} and E_{2} be measurable sets on the $x y$-plane and $\varphi_{1}(x, y), \varphi_{2}(x, y)$ be the characteristic functions of E_{1} and E_{2} respectively and $\mathfrak{r}=(h, k)$.
(i) We first assume $m E_{2}<\infty$. Then

$$
\begin{gathered}
m\left(E_{1} \cdot E_{2}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi_{1}(x, y) \varphi_{2}(x, y) d x d y \\
m E_{1}\left(E_{2}+\mathfrak{x}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi_{1}(x, y) \varphi_{2}(x-h, y-k) d x d y
\end{gathered}
$$

so that

$$
\begin{gathered}
\left|m E_{1}\left(E_{2}+\mathfrak{x}\right)-m\left(E_{1} \cdot E_{2}\right)\right|=\left|\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi_{1}(x, y)\left(\varphi_{2}(x-h, y-k)-\varphi_{2}(x, y)\right) d x d y\right| \leqq \\
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|\varphi_{2}(x-h, y-k)-\varphi_{2}(x, y)\right| d x d y .
\end{gathered}
$$

Hence as before we have $\lim _{|\mathrm{r}| \rightarrow 0} m E_{1}\left(E_{2}+\mathrm{r}\right)=m\left(E_{1} \cdot E_{2}\right)$.
(ii) If $m E_{1}<\infty$, then $m E_{1}\left(E_{2}+r\right)=m\left(E_{1}-r\right) E_{2}$, so that this case reduces to (i), q.e.d.

Hence if we put $\psi(h, k)=m E_{1}\left(E_{2}+\mathrm{r}\right)$, then $\psi(h, k)$ is a continuous function of (h, k).

Remark. The theorem is not true, if $m E_{1}=\infty, m E_{2}=\infty$. To see this, we take for E_{1} the upper half-plane $y \geqq 0$ and for E_{2} the lower half-plane $y \leqq 0$. Then $m\left(E_{1} \cdot E_{2}\right)=0$. If we translate E_{2} in the direction of the positive y-axis, and let $E_{2}+y$ be the translated set. Then $m E_{1}\left(E_{2}+y\right)=\infty$ for any $y>0$.

Theorem III. Let E_{1} and E_{2} be measurable sets in an n-dimensional space and $m E_{1}>0, m E_{2}>0$. Then we can translate E_{2} suitably, such that

$$
\begin{equation*}
m E_{1}\left(E_{2}+\mathfrak{r}_{0}\right)>0 \tag{3}
\end{equation*}
$$

Fukamiya ${ }^{1)}$ proved the case $n=1$.
Proof. We prove the case $n=2$. Let E_{1} and E_{2} be measurable sets on the $x y$-plane and $\varphi_{1}(x, y), \varphi_{2}(x, y)$ be the characteristic functions of E_{1} and E_{2} respectively and $\mathfrak{r}=(h, k)$.
(i) First we assume $m E_{1}<\infty, m E_{2}<\infty$. Then by Theorem II,

$$
\psi(h, k)=m E_{1}\left(E_{2}+x\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi_{1}(x, y) \varphi_{2}(x-h, y-k) d x d y
$$

is a continuous function of (h, k), so that by Fubini's theorem,

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \psi(h, k) d h d k=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi_{1}(x, y) d x d y \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi_{2}(x-h, y-k) d h d k \\
& \quad=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi_{1}(x, y) d x d y \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi_{2}(h, k) d h d k=m E_{1} \cdot m E_{2}>0 .
\end{aligned}
$$

Hence $\psi\left(h_{0}, k_{0}\right)=m E_{1}\left(E_{2}+\mathfrak{r}_{0}\right)>0$ for a suitable $\mathfrak{r}_{0}=\left(h_{0}, k_{0}\right)$.
(ii) In the general case, we take bounded sub-sets E_{1}^{\prime} of E_{1} and E_{2}^{\prime} of E_{2}, such that $0<m E_{1}^{\prime}<\infty, 0<m E_{2}^{\prime}<\infty$, then by (i),

[^1]$m E_{1}^{\prime}\left(E_{2}^{\prime}+\mathrm{r}_{0}\right)>0$ for a suitable $\mathrm{r}_{0}=\left(h_{0}, k_{0}\right)$, so that $m E_{1}\left(E_{2}+\mathrm{r}_{0}\right) \geqq$ $m E_{1}^{\prime}\left(E_{2}^{\prime}+r_{0}\right)>0$, q.e.d.

Theorem IV (Steinhaus) ${ }^{4}$. Let E be a measurable set in an n dimensional space and $m E>0$. Let $a \in E, b \in E$. We translate the vector $\overrightarrow{a b}$, such that its initial point a coincides with the origin of the coordinates and $\mathfrak{r}(a, b)$ be the translated vector. Let E_{0} be the set of end points of $\mathfrak{r}(a, b)$. Then E_{0} contains a certain n-dimensional sphere about the origin.

Proof. By Theorem I, for any vector \mathfrak{r}, such that $|\mathfrak{r}|<\rho$, $m E(E+\mathrm{r})>0$, so that $E(E+\mathrm{r}) \neq 0$. Hence there are two points, $a \in E, b=a+r \in E$, so that E_{0} contains a sphere of radius ρ about the origin, q. e.d.

Theorem V (Steinhaus) ${ }^{5}$. Let E_{1} and E_{2} be measurable sets in an n-dimensional space and $m E_{1}>0, m E_{2}>0$ and E_{0} be the set of end points of $\mathfrak{r}(a, b)$, where $a \in E_{1}, b \in E_{2}$. Then E_{0} contains a certain n dimensional sphere.

Proof. By Theorem III, $m E_{1}\left(E_{2}+\mathfrak{r}_{0}\right)>0$ for some $\mathfrak{r}_{0}=\left(h_{0}, k_{0}\right)$. Let $E^{\prime}=E_{1}\left(E_{2}+\mathrm{r}_{0}\right)$ and E_{0}^{\prime} be the set of end points of $\mathrm{r}(a, b)$, where $a \in E^{\prime}$, $b \in \boldsymbol{E}^{\prime}$. Then by Theorem IV, $\boldsymbol{E}_{0}^{\prime}$ contains a certain n-dimensional sphere K of radius ρ about the origin. Hence for any \mathfrak{r}, such that $|\mathrm{r}|<\rho$, there are two points $a \in E^{\prime}, b=a+\mathfrak{r} \in E^{\prime}$. Since $a \in E_{2}+\mathrm{r}_{0}$, there exists a point $a_{1} \in E_{2}$, such that $a=a_{1}+\mathrm{r}_{0}$, so that $\overrightarrow{a_{1} b}=\mathfrak{r}+\mathrm{r}_{0}$. Hence E_{0} contains a sphere $K+\mathfrak{r}_{0}$, q.e.d.

Theorem VI. Let E_{1} and E_{2} be measurable sets in an n-dimensional space and $m E_{1}=m E_{2}$. Then we can decompose E_{1} and E_{2}, such that

$$
E_{1}=e_{1}^{(0)}+\sum_{n=1}^{\infty} e_{1}^{(n)}, \quad E_{2}=e_{2}^{(0)}+\sum_{n=1}^{\infty} e_{2}^{(n)},
$$

where $m e_{1}^{(0)}=0, m e_{2}^{(0)}=0$ and $e_{1}^{(n)}$ is congruent with $e_{2}^{(n)}$ by a translation. Fukamiya ${ }^{6)}$ proved the case $n=1$.

Proof. We prove the case $n=2$. Let E_{1} and E_{2} be measurable sets on the $x y$-plane.
(i) First we assume that E_{1} and E_{2} are bounded, so that E_{1} and E_{2} are contained in a square: $|x|<L,|y|<L$. Let $\varphi_{1}(x, y), \varphi_{2}(x, y)$ be the characteristic functions of E_{1} and E_{2} respectively and $\mathfrak{r}=(h, k)$ be such a vector, that $|h| \leqq 2 L,|k| \leqq 2 L$. We put

$$
\psi(h, k)=m E_{1}\left(E_{2}+\mathfrak{r}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi_{1}(x, y) \varphi_{2}(x-h, y-k) d x d y .
$$

Since $\varphi_{2}(x, y)=0$ for $|x| \geqq L,|y| \geqq L$, we have by Fubini's theorem,

$$
\begin{align*}
& \int_{-2 L}^{2 L} \\
& \int_{-2 L}^{2 L} \psi(h, k) d h d k=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi_{1}(x, y) d x d y \int_{-2 L}^{2 L} \int_{-2 L}^{2 L} \psi_{2}(x-h, y-k) d h d k \tag{4}\\
& \quad=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi_{1}(x, y) d x d y \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi_{2}(h, k) d h d k=m E_{1} m E_{2}=\left(m E_{1}\right)^{2}
\end{align*}
$$

[^2]Let $M=\operatorname{Max} . \psi(h, k)$ for $|h| \leqq 2 L,|k| \leqq 2 L$, then $(4 L)^{2} M \geqq\left(m E_{1}\right)^{2}$, or $M \geqq \frac{\left(m E_{1}\right)^{2}}{(4 L)^{2}}$, so that there exists a vector $\mathfrak{r}_{0}=\left(h_{0}, k_{0}\right)$, such that $\psi\left(h_{0}, k_{0}\right)=m E_{1}\left(E_{2}+\mathfrak{x}_{0}\right) \geqq \frac{\left(m E_{1}\right)^{2}}{(4 L)^{2}}$. We put

$$
\left.\begin{array}{l}
e_{1}^{(1)}=E_{1}\left(E_{2}+\mathfrak{r}_{0}\right), \quad e_{2}^{(1)}=E_{1}\left(E_{2}+\mathfrak{r}_{0}\right)-\mathfrak{r}_{0} \tag{5}\\
E_{1}^{(1)}=E_{1} \rightarrow e_{1}^{(1)}, \quad E_{2}^{(1)}=E_{2}-e_{2}^{(1)}
\end{array}\right\}
$$

Then $e_{1}^{(1)}$ is congruent with $e_{2}^{(1)}$ by a translation \mathfrak{r}_{0} and

$$
\begin{equation*}
m E_{1}^{(1)}=m E_{2}^{(1)} \leqq m E_{1}-\frac{\left(m E_{1}\right)^{2}}{(4 L)^{2}} \tag{6}
\end{equation*}
$$

If $m E_{1}^{(1)}>0$, then we apply the same operation on $E_{1}^{(1)}$ and $E_{2}^{(1)}$ and obtain $E_{1}^{(2)}, E_{2}^{(2)}, e_{1}^{(2)}, e_{2}^{(2)}$, such that $e_{1}^{(2)}$ is congruent with $e_{2}^{(2)}$ and

$$
\begin{equation*}
m E_{1}^{(2)}=m E_{2}^{(2)} \leqq m E_{1}^{(1)}-\frac{\left(m E_{1}^{(1)}\right)^{2}}{(4 L)^{2}} \tag{7}
\end{equation*}
$$

Repeating the similar operations, after n steps, we obtain $E_{1}^{(n)}, E_{2}^{(n)}$, $e_{1}^{(n)}, e_{2}^{(n)}$, where $e_{1}^{(n)}$ is congruent with $e_{2}^{(n)}$ by a translation and

$$
\begin{equation*}
m E_{1}^{(n)}=m E_{2}^{(n)} \leqq m E_{1}^{(n-1)}-\frac{\left(m E_{1}^{(n-1)}\right)^{2}}{(4 L)^{2}} \tag{8}
\end{equation*}
$$

Since $m E_{1}^{(n)}$ decreases with n, let $d=\lim _{n \rightarrow \infty} m E_{1}^{(n)}$, then we have from (8), $d \leqq d-\frac{d^{2}}{(4 L)^{2}}$, so that $d=\lim _{n \rightarrow \infty} m E_{1}^{(n)}=0$. Hence if we put $e_{1}^{(0)}=$ $\lim _{n \rightarrow \infty} E_{1}^{(n)}, e_{2}^{(0)}=\lim _{n \rightarrow \infty} E_{2}^{(n)}$, we have

$$
\begin{equation*}
E_{1}=e_{1}^{(0)}+\sum_{n=1}^{\infty} e_{1}^{(n)}, \quad E_{2}=e_{2}^{(0)}+\sum_{n=1}^{\infty} e_{2}^{(n)} \tag{9}
\end{equation*}
$$

where $m e_{1}^{(0)}=0, m e_{2}^{(0)}=0$, and $e_{1}^{(n)}$ is congruent with $e_{2}^{(n)}$ by a translation.
(ii) In the general case, let $m E_{1}=m E_{2}=\sum_{n=1}^{\infty} \eta_{n}\left(\eta_{n}>0\right)$, where we take $\eta_{n}=1$, if $m E_{1}=m E_{2}=\infty$. Then we can decompose E_{1} and E_{2} into bounded sub-sets, $E_{1}^{(n)}$ and $E_{2}^{(n)}$, such that

$$
\begin{equation*}
E_{1}=\sum_{n=1}^{\infty} E_{1}^{(n)}, \quad E_{2}=\sum_{n=1}^{\infty} E_{2}^{(n)} \tag{10}
\end{equation*}
$$

where $m E_{1}^{(n)}=m E_{2}^{(n)}=\eta_{n}$. To see this, let $Q:|x| \leqq L,|y| \leqq L$ be a square and we determine L, so that $m E_{1} Q=\eta_{1}+\cdots+\eta_{n}$ and put $E_{1}^{(n)}=$ $E_{1}\left(Q_{n}-Q_{n-1}\right)$. Then $m E_{1}^{(n)}=\eta_{n}$ and $E_{1}=\sum_{n=1}^{\infty} E_{1}^{(n)}$. Similarly we have $E_{2}=\sum_{n=1}^{\infty} E_{2}^{(n)}, m E_{2}^{(n)}=\eta_{n}$. Since by (i), we can decompose $E_{1}^{(n)}$ and $E_{2}^{(n)}$ into congruent sub-sets, we can decompose E_{1} and E_{2} into congruent sub-sets as stated in the Theorem, q.e.d.

[^0]: 1) W.H. Young: On a class of parametric integrals and their application in the theory of Fourier series. Proc. Royal Soc. (London) A. 85 (1911).
 2) Lebesgue: Lecons sur les séries trigonométriques. p. 15.
[^1]: 3) M. Fukamiya: Sur une propriété des ensembles measurables. Sci. Rep. Tohoku Imp. Univ. 24 (1935).
[^2]: 4), 5) Steinhaus: Sur les distances des points des ensembles de measure positive. Fund. Math. 1 (1920), Rademacher: Über eine Eigenschaft von messbaren Mengen positiven Masses. Jahresbericht d. D. M. V. 30 (1921).
 6) M. Fukamiya, l.c. 3).

