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Important theorems concerning differentiation are derided into two
classes. The first class consists of theorems of differentiability of
indefinite integrals and related theorems. The second is the class of
Denjoy’s theorem and its analogue. We will give a universal method
to prove theorems of the first class, and prove a convergence theorem
which contains theorems of the second class. Our method is to
use maximal theorem due to Hardy and Littlewood and convergence
theorem due to Kantorovitch. This idea is due to K. YoshidaD and
Kantorovitch).

1. Theorems of Kantorovitch and Hardy-Littlewood.
Kantorovitch’s theorem reads as follows).
(K) Let X and Y be regular vector Ittces and U) be a sequence

of operations from X to Y such that U eH (n---1, 2, 3, ...) (by the
Kantorovitch’s notation). If

1. U(x) converges in a dense set D in X,
2. for any in X lira sup U(x) and lira inf U(x) exists, then

U(z) (o)-converges for all in X.
lim sup and lim inf denote those concerning order topology. If

Y=S, then the order limit becomes almost everywhere convergence.
On the other hand maximal theorem reads as follows3).

(HL) We put y(s)--sup(l- x(t)dt sel)for integrable func-
-I

/f z e L" (p> 1), then y e L" and y(O 1" dt N A ].x(t) l" dr.

/f zeLz, then yeL and ly(t)IdtNA [(t)llog Ix(t)l
0

dr/B,

3 If eL, then yeL (0<a<l)and

A I(t) ldt,

where A and B are independent of function (t), and Lz denot the
Zygmund class.

The last is due to Privaloff, which is generalized as follows.
3. If x eL, then y eL, that is, there exists the integral

1) Yosida’s result was not yet published.
2) Kantorovitch, Comptes Rendus Acad. Sci. URSS., 14 (1937), 225 and 14 (1937),

244.
3) Hardy-Littlewood, Acta Math., .54 (1930), 81. See Zygmund, Tr/gonom/va/

Sev/es, (1935), 150.
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K(y(t))dt K(u)=u/(+ogu)/ (e > 0).
I

The class Lc was introduced by Kawata (Takahashi)1).
2. Functions of a real variable.
(2.1) If x(t) e L, then the limit

lim- zx(t)dt (1)

[Vol. 19,

exists and is equal to x(s) almost everywhere, where the limit is taken
such as s e I and I--, s.

This is the fundamental theorem of the Lebesgue integral. If we
know the existence of (1), then the remaining is easy. Now existence
of (1) follows from (K) and (HL), 3. For, If we put

(t)dt,o;r() u(;s)=lI’
where l=(s-h,s+k), h and k being constant, then Ut is (t,t)-eon-
tinuous operation from L on S. By (HL), 3 sup Uz(x) o almost
everywhere. Since class of all continuous functions are dense in S, we
get the theorem, by (K).

If we use (HL), 3 instead of (HL), 3, then we get the theorem
due to Kantorovitch.

(2.2) If x(t)e L, then the limit (1) exists majorated by function
in LK.

3. Functions of many variables.
(2.1) is not true for functions of many variables in general. But

we have
(3.1) If z(s, t) e Lz, that is x(s, t) is rable and. the integral

exists, then the integral JJ,x(s, t)dsdt is strongly differentiable.
This was proved by Jessen, Marcinkiewicz and Zygmund). Their

proof is very difficult, but we can give a simple proof by the method
of 2 We will put, as in 2,

x(s, t)dsdt.uRx s, t)= -I fI
By (L) it is sufficient to prove

lim sup U(x s, t) co almost everywhere

as los.
We can suppose that x(t) 0 almost everywhere. By the Fubini’s

theorem there is a set E1 with measure 1 such that for any fixed t in
E x(s, t)e L concerning s. For t eE we put

1) Takahashi, Sci. Rep. Tohoku Univ., 25 (1936), 56.
2) Jessen, Marcinkiewicz and Zygmund, Fund. Math., 25 (1935), 217. See Saks,

Theory of th Integral, (1937), 147.
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1 rs+h2
l (u,t)du.y(s, t) a,.supa, h-t- h2

As may easily be seen y(s, t) is measurable. If we apply (HL), 2 to
y(s, t) as function of s, then

t)ds B.

Integrating by t we get

i; io y(s, t)dsdt A i’ ioC(s, t)log+ x(s, t)dsdt+B (2)

If we put I= (s-h, s+h2; -k, t+k), then

1 i" { 1 iax(s+u,t+v)du}dv
(, +v)dv almost everywhere.

Thus we have

lira sup U(x s, t) y(s, t) almost everywhere.

Since y(s, t)e L by (2), we get the required result.
We can prove similarly
{3.2) If x(s, t) is mearale and the integral

II  iZ r ntiab 
grable function

(3.3) If x(t, t, ..., t) is measurable and the integral

4. Bo of" (HL) for fzio’
t (e, t) a efin in L and

( 1 x(u,v)dv" (s,t)e 0u( ,t) sup

then y(s, t) does not long to any L(0 a 1). For, if not so, we
can prove by the meth in 2 at the indefinite inal of functio
in L is strongly differenble. But this is not ture in general). There-
fore (HL), 3 does not turn for functions of two variabl in general.

If we rtrict to mlar instals, then (HL), 3 hol. More
generally we can prove

1) Saks, Fund. Math., 25 (1935), 235.
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(4.1) Let (s, t) L nd

y(s, t)- sup/II (u,v)dv,

we (s, )e I and I va re.at inrv. T y(s, t)e L.
For, if we put E ((s, t);] y(s, t)]> a), en by the Vili’s

veng threm

iEI < Ix(s, t) dsdt

Now we have

1+ 2_)+. E-- (1+log

Two vabl analo of (HL), 2o is not e in geneS. But
we Mve

(4.2) If (8, )e Ls,

This is due Wiene. If we drop the lty of .then
(4.3) If (s, {) e Lz and we {

t we

. Rear differ$iabi{y of iefini ngr.
By (4.1) we can prove that
(5.1) Ini ingral of in{egrfu{ of ny vab

red,fly diff$le mos$ here.. A cvgee tem.
(6.1) U() be a se of linear traf{ in H{

whh {rafms a rear vec $t X at Y.

i) U=(x) (o)-vg in a de t D in X.
2. if U=(x) (o)-bnded, t te are (x,) in D and

1) Wiener, Duke Math. Journ., 5 (1939), 1.
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is (o)-bounded for any (n), are satisfied, then { U(x)} /s not (o) bounded
or (o)-converges.

Proof. If the theorem is not true, then there is an in X such
that {U,(x)} is (o)-bounded but does not (o)-converges. Then there is
a positive element ) in Y defined by

lim sup U.()-lim inf U().

On the other hand there is a sequence (x.) in D satisfying con-
ditions in 2 If we put

s...(x) sup(U:(x),...,
then

lims..()--, lims..(x)=O, lim

Let us take a sequence () of positive number such that
k-1

K<: o. There is a y such that above limits exist uniformly relative
to y. Now there are nl and ml such that s.,,l()-yl<: ey, and then
there is a p such that

Is,,. ,.(x)-s,.,(xq) <:y for p, q

When (n, m, p) (i= 1, 2, ..., k-1) are determined, we can find ha,

and p such that Pk P-,

[s,.(x)-s,.,(x_) <:y (i I, 2, ..., k- I).

By the condition 2, there is an = 2(x.-x._1) such that ,
._[ (o)-converges and U() is (o)-bounded. Now

k-I

i-I i-k+l

-I
(,+ ik)Y Ky.

Thus we have

which implies s..() is not (o)-und. This is a contradiction.
Thus we get the threm.


