23. Notes on Differentiation.

By Shin-ichi IZUMI and Gen-ichirô SUNOUCHI.

Mathematical Institute, Tohoku Imperial University, Sendai.

(Comm. by M. FUJIWARA, M.I.A., March 12, 1943.)

Important theorems concerning differentiation are devided into two classes. The first class consists of theorems of differentiability of indefinite integrals and related theorems. The second is the class of Denjoy's theorem and its analogue. We will give a universal method to prove theorems of the first class, and prove a convergence theorem which contains theorems of the second class. Our method is to use maximal theorem due to Hardy and Littlewood and convergence theorem due to Kantorovitch. This idea is due to K. Yoshida¹⁾ and Kantorovitch²⁰.

1. Theorems of Kantorovitch and Hardy-Littlewood.

Kantorovitch's theorem reads as follows³⁾.

(K) Let X and Y be regular vector lattices and (U_n) be a sequence of operations from X to Y such that $U_n \in H_t^i$ (n=1, 2, 3, ...) (by the Kantorovitch's notation). If

1°. $U_n(x)$ converges in a dense set D in X,

2°. for any x in X lim sup $U_n(x)$ and lim inf $U_n(x)$ exists, then $U_n(x)$ (o)-converges for all x in X.

lim sup and lim inf denote those concerning order topology. If Y=S, then the order limit becomes almost everywhere convergence.

On the other hand maximal theorem reads as follows³⁾.

(HL) We put $y(s) \equiv \sup\left(\frac{1}{|I|}\int_{I} x(t)dt; s \in I\right)$ for integrable func-

tion x(t). Then

1°.	If $x \in L^p$ $(p > 1)$, then $y \in L^p$ and $\int_0^1 y $	$t) ^{p} dt \leq A \int_{0}^{1} x(t) ^{p} dt.$
	If $x \in L_Z$, then $y \in L$ and $\int_0^1 y(t) dt \leq 1$	•

dt + B,

3°. If
$$x \in L$$
, then $y \in L^a$ (0 < a < 1) and $\left(\int_0^1 |y(t)|^a\right)^{\frac{1}{a}} dt \leq T$

 $A\int_0^1 |x(t)| dt,$

where A and B are independent of function x(t), and L_z denotes the Zygmund class.

The last is due to Privaloff, which is generalized as follows.

 3^{∞} . If $x \in L$, then $y \in L_K$, that is, there exists the integral

2) Kantorovitch, Comptes Rendus Acad. Sci. URSS., 14 (1937), 225 and 14 (1937), 244.

¹⁾ Yosida's result was not yet published.

³⁾ Hardy-Littlewood, Acta Math., 54 (1930), 81. See Zygmund, Trigonometrical Series, (1935), 150.

$$\int_{I} K(y(t)) dt \text{ where } K(u) = u/(1 + \log_{2}^{+}u)^{1+e} \text{ } (e > 0).$$

The class L_{K} was introduced by Kawata (Takahashi)¹⁾.
2. Functions of a real variable.
(2.1) If $x(t) \in L$, then the limit

$$\lim \frac{1}{|I|} \int_{I} x(t) dt \tag{1}$$

exists and is equal to x(s) almost everywhere, where the limit is taken such as $s \in I$ and $I \rightarrow s$.

This is the fundamental theorem of the Lebesgue integral. If we know the existence of (1), then the remaining is easy. Now existence of (1) follows from (K) and (HL), 3°. For, If we put

$$U_I(x) \equiv U_I(x;s) = \frac{1}{|I|} \int_I x(t) dt,$$

where I = (s - h, s + k), h and k being constant, then U_I is (t, t)-continuous operation from L on S. By (HL), 3° sup $U_I(x) < \infty$ almost everywhere. Since class of all continuous functions are dense in S, we get the theorem by (K).

If we use (HL), 3^{∞} instead of (HL), 3° , then we get the theorem due to Kantorovitch.

(2.2) If $x(t) \in L$, then the limit (1) exists majorated by function in L_{K} .

3. Functions of many variables.

(2.1) is not true for functions of many variables in general. But we have

(3.1) If $x(s, t) \in L_Z$, that is x(s, t) is measurable and the integral

$$\int_{0}^{1} \int_{0}^{1} |x(s, t)| \log^{+} |x(s, t)| \, ds dt$$

exists, then the integral $\iint_{I} x(s, t) ds dt$ is strongly differentiable.

This was proved by Jessen, Marcinkiewicz and Zygmund²⁾. Their proof is very difficult, but we can give a simple proof by the method of $\S 2$. We will put, as in $\S 2$,

$$U_I(x; s, t) \equiv \frac{1}{|I|} \iint_I x(s, t) ds dt \, .$$

By (L) it is sufficient to prove

$$\limsup U_I(x; s, t) < \infty \quad \text{almost everywhere}$$

as $I \rightarrow s$.

We can suppose that $x(t) \ge 0$ almost everywhere. By the Fubini's theorem there is a set E_1 with measure 1 such that for any fixed t in $E_1 x(s, t) \in L$ concerning s. For $t \in E_1$ we put

106

¹⁾ Takahashi, Sci. Rep. Tohoku Univ., 25 (1936), 56.

²⁾ Jessen, Marcinkiewicz and Zygmund, Fund. Math., 25 (1935), 217. See Saks, Theory of the Integral, (1937), 147.

Notes on Differentiation.

$$y(s, t) \equiv \sup_{h_1, h_2} \frac{1}{h_1 + h_2} \int_{s - h_1}^{s + h_2} x(u, t) du$$

As may easily be seen y(s, t) is measurable. If we apply (HL), 2° to y(s, t) as function of s, then

$$\int_0^1 y(s,t)ds \leq A \int_0^1 x(s,t) \log^+ x(s,t)ds + B.$$

Integrating by t we get

$$\int_{0}^{1} \int_{0}^{1} y(s, t) ds dt \leq A \int_{0}^{1} \int_{0}^{1} x(s, t) \log^{+} x(s, t) ds dt + B.$$
 (2)

If we put $I = (s - h_1, s + h_2; t - k_1, t + k_2)$, then

$$U_{I}(x; s, t) = \frac{1}{k_{1}+k_{2}} \int_{-k_{1}}^{k_{2}} \left\{ \frac{1}{h_{1}+h_{2}} \int_{-k_{1}}^{h_{2}} x(s+u, t+v) du \right\} dv$$
$$\leq \frac{1}{k_{1}+k_{2}} \int_{-k_{1}}^{k_{2}} y(s, t+v) dv \quad \text{almost everywhere}$$

Thus we have

 $\limsup U_I(x; s, t) \leq y(s, t) \quad \text{almost everywhere.}$

Since $y(s, t) \in L$ by (2), we get the required result.

We can prove similarly

(3.2) If x(s, t) is measurable and the integral

$$\int_{0}^{1} \int_{0}^{1} |x(s, t)| (\log^{+} |x(s, t)|)^{2} ds dt$$

exists, then $\iint_{I} x(s, t) ds dt$ is strongly differentiable majorated by integrable function.

(3.3) If $x(t_1, t_2, ..., t_m)$ is measurable and the integral

$$\int_{0}^{1} \cdots \int_{0}^{1} |x(t_{1}, t_{2}, \ldots, t_{m})| \Big(\log^{+} |x(t_{1}, t_{2}, \ldots, t_{m})| \Big)^{m-1} dt_{1} \cdots dt_{m}$$

exists, then the indefinite integral of $x(t_1, t_2, ..., t_m)$ is strongly differentiable.

4. Extension of (HL) for functions of many variables.

Let x(s, t) be a function in L and put

$$y(s, t) \equiv \sup\left(\frac{1}{|I|} \iint_{I} x(u, v) du dv; (s, t) \in I\right)$$

then y(s, t) does not belong to any $L^{\alpha}(0 < \alpha < 1)$. For, if not so, we can prove by the method in §2 that the indefinite integral of functions in L is strongly differentiable. But this is not ture in general¹⁾. Therefore (HL), 3[∞] does not ture for functions of two variables in general.

If we restrict to regular intervals, then (HL), 3° holds. More generally we can prove

No. 3.]

107

¹⁾ Saks, Fund. Math., 25 (1935), 235.

(4.1) Let $x(s, t) \in L$ and put

$$y(s, t) \equiv \sup \frac{1}{|I|} \iint_{I} x(u, v) du dv$$

where $(s, t) \in I$ and I varies on regular intervals. Then $y(s, t) \in L_K$.

For, if we put $E_a \equiv ((s, t); |y(s, t)| > a)$, then by the Vitali's covering theorem

$$\frac{1}{3}|E_{\alpha}| \leq \frac{1}{\alpha}\int_0^1\int_0^1|x(s,t)|\,dsdt\,.$$

Now we have

$$\begin{split} \int_{0}^{1} \int_{0}^{1} K(y(s,t)) ds dt &\leq 1 + \sum_{k=2}^{\infty} \iint_{E_{2^{k-1}} - E_{2^{k}}} K(y(s,t)) ds dt \\ &\leq 1 + \sum_{k=2}^{\infty} \frac{2^{k}}{(1 + \log 2^{k-1})^{1+e}} |E_{2^{k-1}}| \\ &\leq 1 + \left(\sum_{k=2}^{\infty} \frac{6}{k^{1+e}}\right) \int_{0}^{1} \int_{0}^{1} |x(s,t)| \, ds dt < \infty \end{split}$$

Two variables analogy of (HL), 2° is not true in general. But we have

(4.2) If $x(s, t) \in L_Z$, then

$$\int_{0}^{1} \int_{0}^{1} |y(s, t)| \, ds dt \leq A \int_{0}^{1} \int_{0}^{1} |x(s, t)| \log^{+} |x(s, t)| \, ds dt + B$$

This is due to Wiener¹⁾. If we drop the regularity of *I*, then (4.3) If $x(s, t) \in L_Z$ and we put

$$z(s,t) \equiv \lim_{k_1, k_2 \to 0} \frac{1}{k_1 + k_2} \int_{t-k_1}^{t+k_2} \left\{ \sup_{k_1, k_2} \frac{1}{h_1 + h_2} \int_{s-h_1}^{s+h_2} |x(u, v)| \, du \right\} dv,$$

then we have

$$\int_{0}^{1} \int_{0}^{1} z(s, t) ds dt \leq A \int_{0}^{1} \int_{0}^{1} |x(s, t)| \log^{+} |x(s, t)| ds dt + B.$$

5. Regular differentiability of indefinite integral.

By (4.1) we can prove that

(5.1) Indefinite integral of integrable functions of many variables is regularly differentiable almost everywhere.

6. A convergence theorem.

(6.1) Let $U_m(x)$ be a sequence of linear transformations in H_t^t which transforms a regular vector lattice X onto another Y. If the conditions :

i) $U_m(x)$ (o)-converges in a dense set D in X.

2°. if $U_m(x)$ is (o)-bounded, then there are (x_n) in D and (λ_k) such that $k \ge \lambda_k \uparrow \infty$, $\sum \lambda_k |x_k - x_{k+1}|$ (o)-converges and

1) Wiener, Duke Math. Journ., 5 (1939), 1.

[Vol. 19,

Notes on Differentiation.

$$\left\{U_m\left(\sum_{k=1}^{m-1}\lambda_k(x_{n_k}-x_{n_{k-1}})\right)\right\}$$

is (o)-bounded for any (n_k) , are satisfied, then $\{U_m(x)\}$ is not (o) bounded or (o)-converges.

Proof. If the theorem is not true, then there is an \bar{x} in X such that $\{U_m(x)\}$ is (o)-bounded but does not (o)-converges. Then there is a positive element \bar{y} in Y defined by

$$\bar{y} = \limsup U_m(\bar{x}) - \liminf U_m(\bar{x})$$
.

On the other hand there is a sequence (x_n) in D satisfying conditions in 2°. If we put

$$\mathbf{s}_{n,m}(x) \equiv \sup (U_n(x), \ldots, U_m(x)) - \inf (U_n(x), \ldots, U_m(x)),$$

then

$$\lim s_{n,m}(\bar{x}) = \bar{y}, \quad \lim s_{n,m}(x_p) = 0, \quad \lim s_{n,m}(x_p - x_q) = 0.$$

Let us take a sequence (ϵ_k) of positive number such that $\sum_{k=1}^{\infty} k\epsilon_k = K < \infty$. There is a y such that above limits exist uniformly relative to y. Now there are n_1 and m_1 such that $|s_{n_1,m_1}(\bar{x}) - y| < \epsilon_1 y$, and then there is a p_1 such that

$$egin{aligned} &|s_{n_1,m_1}(x_p) - s_{n_1,m_1}(x_q) \mid < \epsilon_1 y ext{ for } p,q \geq p_1 , \ &|s_{n_1,m_1}(x_{p_1}) - ar{y} \mid < 2\epsilon_1 y \ . \end{aligned}$$

When (n_i, m_i, p_i) (i=1, 2, ..., k-1) are determined, we can find n_k, m_k and p_k such that $p_k > p_{k-1}$,

$$\begin{split} |s_{n_k, m_k}(x_{p_k}) - \bar{y}| &< 2\epsilon_k y , \\ |s_{n_k, m_k}(x_{p_i})| &< \epsilon_i y \quad (i=1, 2, ..., k-1) , \\ |s_{n_i, m_i}(x_{p_k}) - s_{n_i, n_i}(x_{p_{k-1}})| &< \epsilon_k y \quad (i=1, 2, ..., k-1) . \end{split}$$

By the condition 2°, there is an $\overline{x} = \sum \lambda_k (x_{n_k} - x_{n_{k-1}})$ such that $\sum \lambda_k |x_{n_k} - x_{n_{k-1}}|$ (o)-converges and $U_n(\overline{x})$ is (o)-bounded. Now

$$|s_{n_{k},m_{k}}(x)-s_{n_{k},m_{k}}(\lambda_{k}x_{p_{k}})|$$

$$\leq \sum_{i=1}^{k-1} (\lambda_{i}-\lambda_{i-1})|s_{n_{k},m_{k}}(x_{p_{i}})|+\sum_{i=k+1}^{\infty} \lambda_{i}|s_{n_{k},m_{k}}(x_{p_{i}}-x_{p_{i-1}})|$$

$$\leq (\sum_{i=1}^{k-1} i\epsilon_{i}+\sum_{i=k+1}^{\infty} i\epsilon_{k})y \leq Ky.$$

Thus we have

$$|s_{n_k,m_k}(x)-\lambda_k y| \leq Ky+2\lambda_k \epsilon_k y$$
,

which implies $s_{n_k,m_k}(x)$ is not (o)-bounded. This is a contradiction. Thus we get the theorem.

No. 3.]