73. Normed Ring of a Locally Compact Abelian Group.

By Kunihiko KODAIRA

Mathematical Institute, Tokyo Bunrika Daigaku.

Shizuo KAKUTANI.

Mathematical Institute, Osaka Imperial University.

(Comm. by T. TAKAGI, M.I.A., July 12, 1943.)

§1. Let G be a locally compact (not necessarily separable) abelian group, and let $L^2(G)$ be the generalized Hilbert space of all complexvalued functions x(g) which are defined, measurable and square integrable on G with respect to a Haar measure of G (with a certain fixed normalization) having

(1)
$$||x|| = \left(\int_G |x(g)|^2 dg\right)^{\frac{1}{2}}$$

as its norm. Let further $\mathfrak{B}(G)$ be the ring of all bounded linear transformations B which map $L^2(G)$ into itself. Then $\mathfrak{B}(G)$ is a (non-commutative) normed ring¹⁾ with respect to the norm

(2)
$$||| B ||| = \sup_{|x| \le 1} || B(x) ||.$$

For each $a \in G$, let us denote by U_a a unitary transformation of $L^2(G)$ onto itself which is defined by

(3)
$$U_a(x) = x_a, \quad x_a(g) = x(g-a).$$

Then $\mathfrak{U}(G) = \{U_a \mid a \in G\}$ is a group of unitary transformations which is algebraically isomorphic with G. Let further $\mathfrak{V}(G)$ be an algebraic subring of $\mathfrak{B}(G)$ which is generated by $\mathfrak{U}(G)$, i. e. a subring of $\mathfrak{B}(G)$ consisting of all $A \in \mathfrak{B}(G)$ of the form:

$$(4) A = \sum_{p=1}^{k} a_p U_{a_p}$$

where $\{a_1, ..., a_k\} \subseteq G$ and $\{a_1, ..., a_k\}$ is an arbitrary finite system of complex numbers. Let further $\Re(G)$ be the closure of $\mathfrak{A}(G)$ in $\mathfrak{B}(G)$, i.e. a subring of $\mathfrak{B}(G)$ consisting of all $B \in \mathfrak{B}(G)$ such that for any $\varepsilon > 0$ there exists an $A \in \mathfrak{A}(G)$ satisfying $||| B - A ||| < \varepsilon$.

The purpose of this paper is to determine a general form of maximal ideals of $\Re(G)$. It will be shown that there exists a one-toone correspondence between the family $\mathfrak{M}(G)$ of all maximal ideals M of $\Re(G)$ and the family $\mathfrak{X}(G)$ of all algebraic (=not necessarily continuous) characters²⁾ $\chi(a)$ defined on G. This correspondence is even

¹⁾ I. Gelfand, Normierte Ringe, Recueil Math., 9 (1941), 3-25.

²⁾ Under a character of a locally compact abelian group G, we understand a continuous representation of G by the additive group of real numbers mod. 1. Sometimes it is also necessary to consider representations of G which are not necessarily continuous. In order to distinguish these cases, we usually say continuous characters and algebraic characters of G.

No. 7.]

a homeomorphism if we take the usual weak topology of $\mathfrak{M}(G)$ with respect to which $\mathfrak{M}(G)$ is a compact Hausdorff space, and if we consider $\mathfrak{X}(G)$ as the compact character group $G^{(d)*}$ of a discrete abelian group $G^{(d)}$ which is algebraically isomorphic with G. It will also be shown that $\mathfrak{N}(G)$ is isometrically isomorphic with the normed ring $C(\mathfrak{M}(G)) = C(\mathfrak{X}(G))$ of all complex-valued continuous functions defined on $\mathfrak{M}(G) = \mathfrak{X}(G)$. From these two facts follows immediately that the normed ring $\mathfrak{N}(G)$ is uniquely determined up to an isometric isomorphism by the algebraic structure of a locally compact abelian group G, and so is independent of the topology or the Haar measure of G which we needed in defining $L^2(G)$. Thus it turns out that in order to investigate the normed ring $\mathfrak{N}(G)$ of a locally compact abelian group G, it suffices to discuss the case when G is a discrete abelian group.

§ 2. Let M be an arbitrary maximal ideal of $\Re(G)$. Then there exists a continuous natural homomorphism $B \to \varphi_M(B)$ of $\Re(G)$ onto the ring of complex numbers such that $|\varphi_M(B)| \leq |||B|||$ for any $B \in \Re(G)$ and $M = \{B | \varphi_M(B) = 0\}$. It is then clear that $a \to U_a \to \varphi_M(U_a)$ is an algebraic representation of G by complex numbers. Further, since $|\varphi_M(U_a)| \leq |||U_a||| = 1$ and $|(\varphi_M(U_a))^{-1}| = |\varphi_M(U_{-a})| \leq |||U_{-a}||| = 1$, so we see that $|\varphi_M(U_a)| = 1$ for all $a \in G$. Thus $\varphi_M(U_a) = \exp(2\pi i \chi_M(a))$ defines an algebraic character $\chi_M(a)$ on G (whose value is a real number mod. 1), of which we do not know whether it is continuous or not. In the following lines we shall show that $\chi_M(a)$ is not necessarily continuous unless G is discrete, and that every algebraic character $\chi(a)$ of G may be obtained in this way, i.e. that for any algebraic character $\chi(a)$ defined on G there exists a maximal ideal M of the normed ring $\Re(G)$ such that $\chi(a) = \chi_M(a)$ for all $a \in G$.

§3. Let G^* be the character group of G in the sense of L. Pontrjagin¹⁾ and E. R. van Kampen²⁾ G^* is also a locally compact abelian group. Hence we may consider the generalized Hilbert space $L^2(G^*)$ and the ring $B(G^*)$ of all bounded linear transformations B^* of $L^2(G^*)$ into itself. The norm of an element $x^* \in L^*(G^*)$ is denoted by $||x^*||$, and the norm of a transformation $B^* \in \mathfrak{B}(G^*)$ is denoted by $||B^*|||$. It is known that if we take a suitable normalization of a Haar measure on G^* , then an analogue of Plancherel's theorem is true^{3) 4)}: for any $x(g) \in L^2(G)$, the integral⁵⁾

(5)
$$x^*(g^*) = \int_G x(g) \exp(2\pi i(g, g^*)) dg$$
,

¹⁾ L. Pontrjagin, Topological Groups, Princeton, 1939.

²⁾ E. R. van Kampen, Locally bicompact abelian groups and their character groups, Annals of Math., 36 (1935), 448-463.

³⁾ A. Weil, Intégrations dans les groupes et leurs applications, Actualités, Paris, 1940.

⁴⁾ M. Krein, Sur une généralisation du théorème de Plancherel au cas des intégrales de Fourier sur les groupes topologiques commutatifs, C. R. URSS, **30** (1940), 484-488.

⁵⁾ (g, g^*) denotes the value of a character $g^* \in G^*$ at a point $g \in G$, and also the value of a character $g \in G$ at a point $g^* \in G^*$

which exists in the sense of the limit in mean, defines an element $x^* = P(x) \in L^2(G^*)$; conversely, for any $x^*(g^*) \in L^2(G^*)$, the integral

(6)
$$x(g) = \int_{G^*} x^*(g^*) \exp\left(-2\pi i(g,g^*)\right) dg^*,$$

which again exists in the sense of the limit in mean, defines an element $x=Q(x^*) \in L^2(G)$; both P and Q are isometric linear transformations and are inverse to each other: ||P(x)|| = ||x||, $||Q(x^*)|| = ||x^*||$ and PQ = QP = I (=identity).

For any $B \in \mathfrak{B}(G)$, let us consider an element $B^* \in \mathfrak{B}(G^*)$ defined by $B^* = PBQ$. It is clear that B is obtained from B^* by the inverse relation: $B = QB^*P$, and that the correspondence $B \leftrightarrow B^*$ gives an isometric isomorphism of $\mathfrak{B}(G)$ onto $\mathfrak{B}(G^*)$. Let us now consider a subring $\mathfrak{R}^*(G^*)$ of $\mathfrak{B}(G^*)$ which corresponds to $\mathfrak{R}(G)$ by this isomorphism. First it is easy to see that if $A = U_a$, then the corresponding A^* is a bounded linear transformation of $L^2(G^*)$ which maps $x^*(g^*)$ to $\exp\left(2\pi i(a,g^*)\right)x^*(g^*)$. Further, if A is of the form (4), then the corresponding A^* is a bounded linear transformation of $L^2(G^*)$ which maps $x^*(g^*)$ to $\left(\sum_{p=1}^k a_p \exp\left(2\pi i(a_p,g^*)\right)\right)x^*(g^*)$. From this follows easily that

(7)
$$||| \sum_{p=1}^{k} a_p U_{a_p} ||| = \sup_{g^* \in G^*} \left| \sum_{p=1}^{k} a_p \exp\left(2\pi i(a_p, g^*)\right) \right|.$$

Thus the norm of a transformation $A = \sum_{p=1}^{k} a_p U_{a_p}$ coincides with the norm $||f_A^*||$ of a complex-valued continuous function

(8)
$$f_A^*(g^*) = \sum_{p=1}^k a_p \exp\left(2\pi i(a_p, g^*)\right),$$

where we put as usual

(9)
$$||f^*|| = \sup_{g^* \in G^*} |f^*(g^*)|.$$

Let now $BAP(G^*)$ be the family of all complex-valued Bohr almost periodic¹⁾ functions $f^*(g^*)$ defined on G^* . $BAP(G^*)$ is a normed ring with (9) as its norm, and the fact observed above shows that $\mathfrak{A}(G)$ is isometrically isomorphic with a subring $FLC(G^*)$ of $BAP(G^*)$ consisting of all finite linear combinations $\sum_{p=1}^{k} \exp(2\pi i(a_p, g^*))$ of exponential continuous characters $\exp(2\pi i(a_p, g^*))$ defined on G^* . Since for any $f^*(g^*) \in BAP(G^*)$ and for any $\epsilon > 0$, there exists an $f_A^*(g^*) \in FLC(G^*)$ such that $||f^* - f_A^*|| < \epsilon$, so we see that the subring $\Re^*(G^*)$ of $\mathfrak{B}(G^*)$ which corresponds to $\mathfrak{R}(G)$ by the isomorphism stated above consists exactly of all bounded linear transformations of

¹⁾ A complex-valued function $f^*(g^*)$ defined on a locally compact abelian group G^* is a Bohr almost periodic function, if $f^*(g)$ is uniformly continuous on G^* and if the family $\{f^*_{a*}(g^*) \mid a^* \in G^*\}$ of all translations $f^*_{a*}(g^*) = f^*(g^* + a^*)$ of $f^*(g^*)$ is totally bounded with respect to the metric defined by the norm (9). Cf. J. von Neumann, On almost periodic functions in groups, Trans. Amer. Math. Soc. **36** (1934), 446-492.

 $L^2(G^*)$ which maps $x^*(g^*)$ to $f^*(g^*)x^*(g^*)$, where $f^*(g^*)$ is a complexvalued Bohr almost periodic function defined on G^* . Thus

Theorem 1. The normed ring $\Re(G)$ of a locally compact abelian group G is isometrically isomorphic with the normed ring $BAP(G^*)$ of all complex-valued Bohr almost periodic functions $f^*(g^*)$ defined on the character group G^* of G.

§3. As is well known¹, for any locally compact abelian group G^* , there exists a compact abelian group \overline{G}^* and a continuous isomorphism $g^{*'} = \varphi^*(g^*)$ of G^* onto a subgroup $G^{*'}$ of \overline{G}^* which is dense in \overline{G}^* with the following property: for any complex-valued Bohr almost periodic function $f^*(g^*)$ defined on G^* , there exists a complex-valued continuous function $\overline{f}^*(\overline{g}^*)$ defined on \overline{G}^* such that $\overline{f}^*(\varphi^*(g^*)) = f^*(g^*)$ for all $g^* \in G^*$. This group \overline{G}^* is called the universal Bohr compactification of G^* . Since conversely every complex-valued continuous (and hence Bohr almost periodic) function $f^*(g^*)$ defined on G^* determines a complex-valued Bohr almost periodic function $f(g^*) = \overline{f}^*(\varphi^*(g^*))$ on G^* , so we see that the normed ring $BAP(\overline{G}^*)$ is isometrically isomorphic with the normed ring $C(\overline{G}^*) = BAP(\overline{G}^*)$ of all complex-valued continuous functions $\overline{f}^*(\overline{g}^*)$ defined on \overline{G}^* .

On the other hand, it is also known² that if G^* is the character group of a locally compact abelian group G, then the universal Bohr compactification \overline{G}^* of G^* is topologically isomorphic with the compact character group $G^{(d)*}$ of a discrete abelian group $G^{(d)}$ which is algebraically isomorphic with G. In fact, $G^{*'}$ is first obtained by introducing on G^* a weaker uniform structure (G^*, V_r^*, Γ) , where

(10) $V_{\tau}^* = \{(g^*, h^*) \mid | (a_p, g^*) - (a_p, h^*) | < \epsilon, p = 1, ..., k \}$

(11)
$$\Gamma = \{ \gamma = \{a_1, ..., a_k; \varepsilon\} \mid \{a_1, ..., a_k\} \subseteq G, k = 1, 2, ...; \varepsilon > 0 \},$$

with respect to which $G^{*'}$ is totally bounded, and then \overline{G}^* is obtained by taking the completion of $G^{*'}$. Since $G^{(d)*}$ is topologically isomorphic with the group $\mathfrak{X}(G)$ of all algebraic (=not necessarily continuous) characters $\chi(a)$ defined on G with the usual weak topology, so we see

Theorem 2. The normed ring $\Re(G)$ of a locally compact abelian group G is isometrically isomorphic with the normed ring $C(\mathfrak{X}(G)) = C(G^{(d)*})$ of all complex-valued continuous functions defined on a compact abelian group $\mathfrak{X}(G) = G^{(d)*}$, where we mean by $\mathfrak{X}(G)$ the group of all algebraic (=not necessarily continuous) characters $\chi(a)$ defined on G with the usual weak topology, i.e. a compact abelian group topologically isomorphic with the character group $G^{(d)*}$ of a discrete abelian group $G^{(d)}$ which is algebraically isomorphic with G.

¹⁾ T. Tannaka, Über den Dualitätssatz der nichtkommutativen topologischen Gruppen, Tôhoku Math. Jonrn. 45 (1938), 1-12.

²⁾ H. A .ai and S. Kakutani, Bohr compactifications of a locally compact abelian group, to appear in Proc. 19 (1943).

K. KODAIRA and S. KAKUTANI.

§4. From Theorem 2 follows that there exists a one-to-one correspondence between the family $\mathfrak{M}(G)$ of all maximal ideals M of $\mathfrak{R}(G)$ and the family $\mathfrak{X}(G)$ of all algebraic characters $\chi(a)$ defined on G. We shall now determine the precise way in which the correspondence is given. As we have seen in §2, every maximal ideal M of $\mathfrak{R}(G)$ determines an algebraic character $\chi_M(a)$ on G by means of the relation: $\varphi_M(U_a) = \exp\left(2\pi i \chi_M(a)\right)$, where $\varphi_M(B)$ is a continuous natural homomorphism of the ring $\mathfrak{R}(G)$ onto the ring of complex numbers which is determined by M. Conversely, let $\chi_0(a)$ be an arbitrary algebraic character on G. Then

(12)
$$A = \sum_{p=1}^{k} \alpha_p U_{\alpha_p} \rightarrow \varphi_0(A) = \sum_{p=1}^{k} \alpha_p \exp\left(2\pi i \chi_0(\alpha_p)\right)$$

determines an algebraic representation of $\mathfrak{A}(G)$ by complex numbers. From the fact we have observed in the proof of Theorem 1, we see that this representation may be considered as an algebraic representation $f_A^* \to \varphi_0(f_A^*)$ of $FLC(G^*)$ by complex numbers given by

(13)
$$f_A^*(g^*) = \sum_{p=1}^k a_p \exp\left(2\pi i (a_p, g^*)\right) \to \varphi_0(f_A^*) = f_A^*(\chi_0)$$

= $\sum_{p=1}^k a_p \exp\left(2\pi i \chi_0(a_p)\right) = \sum_{p=1}^k a_p \exp\left(2\pi i (a_p, \chi_0)\right).$

This shows that $\varphi_0(f_A^*)$ is obtained first by extending each function $f_A^*(g^*)$ on G^* to a continuous function $f_A^*(\chi) = \sum_{p=1}^k a_p \exp\left(2\pi i \chi(a_p)\right)$ = $\sum_{p=1}^k a_p \exp\left(2\pi i (a_p, \chi)\right)$ on $\overline{G}^* = \mathfrak{X}(G)$, and then by taking the value of $f_A^*(\chi)$ at a particular point $\chi_0 \in \overline{G}^* = \mathfrak{X}(G)$. Since G^* is dense in $\overline{G}^* = \mathfrak{X}(G)$, so we see

(14)
$$|\varphi_0(f_A^*)| \leq \sup_{\chi \in \mathfrak{X}(G)} |f_A^*(\chi)| = \sup_{g^* \in G^*} |f^*(g^*)|,$$

or equivalently

(15)
$$|\varphi_0(A)| \leq |||A||| = ||f_A^*||.$$

Thus it is possible to extend $\varphi_0(A)$ from $\mathfrak{A}(G)$ to $\mathfrak{R}(G)$ (i.e. to extend $\varphi_0(f_A^*)$ from $FLC(G^*)$ to $BAP(G^*)$), and thus we obtain a continuous representation $B \to \overline{\varphi}_0(B)$ of $\mathfrak{R}(G)$ (i.e. a continuous representation $f^* \to \overline{\varphi}_0(f^*) = f^*(\mathfrak{X}_0)$ of $BAP(G^*) = C(G^*) = C(\mathfrak{X}(G)) = C(G^{(d)*})$ which is obtained by taking the value of $f^*(\mathfrak{X})$ at $\mathfrak{X} = \mathfrak{X}_0$). If we now put $M = \{B \mid \overline{\varphi}_0(B) = 0\}$, then it is clear that $\mathfrak{X}_M(a) = \mathfrak{X}_0(a)$ for all $a \in G$. Thus

Theorem 3. There exists a one-to-one correspondence between the family $\mathfrak{M}(G)$ of all maximal ideals M of $\mathfrak{K}(G)$ and the family $\mathfrak{X}(G)$ of all algebraic (=not necessarily continuous) characters $\chi_{M}(a)$ on G given by the following relation:

(16)
$$\varphi_M(U_a) = \exp\left(2\pi i \chi_M(a)\right),$$

where $B \rightarrow \varphi_M(B)$ is a continuous natural homomorphism of $\Re(G)$ onto

No. 7.]

the ring of complex numbers determined by M. More precisely, for any maximal ideal M of $\Re(G)$, the relation (16) determines an algebraic character $\chi_M(a)$ on G, and conversely, for any algebraic character $\chi_0(a)$ on G, the algebraic representation $A \to \varphi_0(A)$ of $\Re(G)$ by complex numbers which is given by (12) can be uniquely extended to a continuous representation $B \to \overline{\varphi}_0(B)$ of $\Re(G)$ by complex numbers such that the maximal ideal $M = \{B \mid \overline{\varphi}_0(B) = 0\}$ determined by $\overline{\varphi}_0(B)$ gives an algebraic character $\chi_M(a)$ which satisfies $\chi_M(a) = \chi_0(a)$ for all $a \in G$.