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70. On the Theory of Hypersurfaces in the Path-space
of the Third Order.

By Yasuro TOMONAGA.
Mathematical Institute, Tokyo Imperial University.
(Comm. by S. KAKEYA, M.IA., July, 12, 1943.)

§0. The theory of path-space of the third order has been developed
by Prof. H. Hombu”. In the present note, we shall deal with the
theory of hypersurfaces in such a space. In an n-dimensional manifold
V.. referred to a coordinate system z* (1=1,2,...,n), let us consider
a system of paths, defined by the differential equations of the third
order,

0.1) T*=x®+ H(x, 2P, 2®)=0.

In order that our system of paths admits of projective parameters,
it is necessary that

0.2) (a) HEa®+2HE2®*=3H*, (b) Hga™ =3z,
The base connections of our V., are defined by

03) (@) BV'=de® +2Hdo",
(b) 8x(2)l=dx(2)l+ _§_ ‘H’(é)ydx(l)y_l_ _3]; Hd) vdxv .

73 2)A
‘We see that 3—“’(B~=0 (along any curve) and 6x‘____0 (along

dt dt
paths).
The covariant derivative of a vector #* in V, is given by
(0.4) v =dvt+wi,
where wﬁ=ﬁ,dx“+f 2,0x

()] (¢Y)

A A 2
05) @) [h=1Hbun—2HouoHon, ) [4=2Hbso.

The equation (0.4) can be also written as follows:

5’0‘ = m()),vl . dxv + Vgl)’l)l . Ml)v + Vgi),vl . 5x(2)u ,
where

_ * _ * —
(06) ‘75’0)1)1 - ri(!),vl _l_(g;"l‘lyv# s Vg)’l)l = ‘79),01 +({)Zp'0” s ,7§2),vl - V$2)vl s

1) H. Hombu: Projektive Transformation eines Systems der gewdhnlichen Dif-
ferentialgleichungen dritter Ordnung. Proc. 13 (1937), 187-190, Die projektive Theorie
der “paths” 3-ter Ordnung. Proc. 14 (1938), 36-40.
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01 @) P=0 -2 Ho o (THE~ 2HpHs,

3 ) ox®*’

Fv. 0 2 (4
b) 7= 0z g &w 2’
© Pe=-2

x> °
Then, the curvature and torsion tensors of our V, are given by
50485 d_ 1O 1 2 QOXOT XD 3 o5, Dn
(0.8) gfv‘ ff" P {(RXD +({)’,.,S,,,u, )flaf’zdx'+R,,,,,, «l?a: gx
+ RA(O)(I)[dwa 3x(l)x] + RI(OXZ)[W 59;(2)::]
om 1 2 uon 1 2
A 57,10 8,2

where

(09) (@) RAO=pOLL—POlA+Inlh—Tal,
(V] (0) o (0) (0) ()]

(b) RARO=PONL— POl Tl —Tal,
(¢V] (1) (eM) (1) @ (l)

©  RIO=POL PO A~ it TAla+ AT 5,

(l) (0) (1) @ (0) [eM] (0)

@ RI(O)(?)-—V(Z)[" -I- 34 P e Hé),

@ Rigo=roLh,

and
(0.10) (a) ftlix‘—ﬁx‘r-s,‘,%'}"tlix“;ix’ +S,§%l,”[;ix“gm‘”'] ,
DA _ 85 (DA — QOXOR OXDA Do
(b) f?x( f‘zx( S ‘1143" {}f + S [‘lix" fx( 1
+ S22,
29 @DA_ 83 (233 . GOXOA AXDAS (D s, (Do
) e =S+ SO 0t
+ SOP dg35De] |
where b

(0.11) (2 S(oxou_ I“ 0)”“ ) S‘(‘g}%l)n:(l:;z' ,
© SO =2POHb~FPHb, @ SSB=1l,
(e) S;(n%gn V( o)Hu)u““"Ha)aV( O)I{(m"‘"‘ﬁ( "Hi)s

+ -Hé>,."2’H(m »



No. 7.]  On the Theory of Hypersurfaces in the Path-space of the Third Order. 343

IXDA — QO 0
(f) SH'=suS*,

() S8= PP Hb,~ 2P Hb,~ 2 Ho P Hie
(h) SO =S

§1. Let us consider a hypersurface V,_; immersed in the V,
whose parametric representation is

x‘ =x‘(yi) yé’ A ] y;'-i) .

In our V,.;, we take a system of paths with projective parameter
defined by

Ti=y(3)i+Hi(yr ya)s y(2))=0 ’ (1:=i’ 21 s ] ’h’_i)

The quantities of V,-; corresponding to that of V, are derived
from H* in the same way as last paragraph. If we put

(1'1 ) 34 HA el Ht+3E‘ (Z)Jy(l)k + E hy(m (l)ky(l)h
Ef ______ E} — azx &l — 33513‘

o T eyt T T ayortort

then 3% is a vector of V,, and scalar of V,_,.
According to the assumption on H? and H®, §* must satisfy the
following relations :

(12) (@) JGy™+23by®*=33%, (b) Shy™=0.
We have from (1.1)
(13) (a) Stvs=HA&,EL+2Hp, &y Vi — £ HE 4 364y @ 4 £4, 9 iy Ok |
(b)  Jbe=H)kr — €1 HG,s+ 350y "
Now we get

L4 (@ WPo= E‘r“’¢+%322,,7‘1’(0+ ----- PSP,

where

(b) r(l)¢ EIV(D¢+_3<(2),V(2)
(c) (2)¢ EIV(Z)¢
@ being an arbitrary quantity of V..
On our hypersurface V,_;, ™ and z®* being expressed as z®i=
Sy, aPr=Ely® +ELy Y™, it can be readily proved that

(1.5) (a) ox =5313y(m+ 3 '\5(2).d

( b) %(2)4] — El 8y(2)" + 8 h,ay(l)t += ( V(I)C"l )dyJ



84 Y. TOMONAGA. [Vol. 19,
Then we have from (1.5)

(1.6) ss.4=ﬁ’,-w+-§~3&m Dk,
where
* " * 1 * Y
(1.7 Fh=thtIAe— 8+ - LSt
8 2 Shoien=LheE-ET %

Furthermore we get from (1.3) and (1.4)
(1.9) F;‘k=%r72’8£»,~-

If we have a vector v* tangent to the hypersurface V,_; then
v* being expressed as v'=£&}*, we have along V,_;

(1.10) 00 =800+ Fhdy+ 2 Slosedt ™).

Definition 1. If we have 3*=0 at every point of V,.i, such a
V-1 18 called totally geodesic V,_;.

Then it is evident from (1.1), that any path of a totally geodesic
Va-1 immersed in V,, is also a path of V..

Definition 2. If we have Sbyp=0 at every point on V,_,, such a
V-1 18 called semi-geodesic V,-;.

From (1.9) and (1.2), it can be proved that semi-geodesic V,_,
has following properties :

(a) o&}=0,
(b) With respect to P, 3* are homogenous of degree 3.

That is to say: When a vector of semi-geodesic V,_, is displaced
parallelly to itself in V, along V.., it moves also parallelly to itself

in Vu—l-
We have from (1.7) and (1.8) the next fundamental relations,
(L.11) k=l — thdtf+ Fdy* +-2 Slpsandy ™.

§2. With use of (1.6) and (1.10), we obtain the integrability con-
ditions of (1.11) as follows:

@1 (2) RAOSEE - RISt
3 BAOEHEE S on — 1)
+3 RIS ETPY)

1 _ _
+ 9 RIVPENIonl I — It 3™
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=# R“°X°’+ 7o, F}, —POF, h+ F ) S"".?‘

+ %3 iwaSiRD” »

() RICEELE -2 RIDEN Yo~ 1300
=&§IRINO+ %(75.”352»'(2)1‘ =P Iricom) »

©) RGBSVt +2 BANVEE S
— S RIRPEETPS + 2 R Yo Yon
= REAC+rPF) — —-V( O3 ion+ FASHG™

0
Sli‘h)((l))a ’

+ -g—S' biwa

(d) RO®eseser+ R},‘,‘}‘”Eﬁ'ﬁ}&,ﬁg

=¢RIO®+p@ R+ 8‘(2)1(2)asku1> ’

where
* *
—_ (O()
BAQO =R+ LASoy .

The integrability conditions of (1.5) are
(2.2) (a) S%oo))lf“fk+-—( 238w — SRS D) Sty = EISY + FA—F;,
(b) SR eser=EISTH+2 Yo,
i

ot 1 0 1
(c) Syreses+--Sahes 3‘{2)1;—73" PATR IR

_1
S,‘,‘.l{")" R g + 1 somiempnoe
— £A QX0 (OO 0;
=EISY +- "\5(2)sSJk( ))'+ V( )3‘(2»‘“—"7@)352)19
0
(@ SSestr+-L S — L SO S

1 S 1GOXD; 2«1 Quoxoi
+ S0 FoiS o = €ISkl E‘«S(znsna)
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+4 FOFISR+ LRy - AR,
@ SOPeeL+ L SU St 3 SUPStuts

=S~ LS dout 2 S S

+-= Vg.)r(l)c"l_l_ (r(l)o'l)s(k(o) R

§3. The equations of (2.2) or (2.1) correspond to the equations
of Gauss and Codazzi in Riemannian geometry. Let us consider the
geometric meaning of them. At first, we must go back to S0 and
consider the classification of spaces.

Definition 8. If I’é}.‘f,‘,‘“’=0. at every point of V, such a V, s
called 0-flat.

Definition 4. If RXXV=0, at every point of V., such a V. is
called 1-flat.

Then, we have from (0.8) the following theorems :

Theorem 1. In order that f;?v‘—-fg“v‘=0 for an arbitrary v' and

vanishing ox®", 8x®*, it is mecessary and sufficient that V, is 0-flat.

Definition 5. If SUH*=0, at every point of V,, such a V. is
called 0-symmetric.

Definition 6. If SOP*=0, at every point of V., such a V. is
called 1-symmetric.

Definition 7. If S“”“”“-O at every point of V,, such a V, s
called 2-symmetric.

Then we have from (0.10) the following theorems :

Theorem 3. In order that f{ix‘—fcziw‘=0, for vanishing 6x™?, it is

necessary and sufficient that V, is 0-symmetric. 4
Theorem 4. In order that f?x‘”‘—fgx“"=0, for vanishing ox®*,

it 18 necessary and sufficient that V,, is 1-symmetric.
Theorem 5. In order that 68x‘2"—i3‘m‘2"=0, Jfor vanishing dx?, it
21 2

18 necessary and sufficient that V, i8 2-symmetric.
Remark. If V, is 0-flat, it is also l-symmetric. If V, is 0-
symmetrie, it is also 1-flat, because we have after some calculation

1
RXOOpr — goxo (SQDA),, = Rmxn i

By means of these theorems and (2.1) or (2.2), we have the
following results.

Theorem 6. (i) The totally geodesic V.-1 immersed in the 0-flat
V., is also 0-flat.

(ii) The totally geodesic V., immersed in the l-symmetric V. s
also 1-symmetric.
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(iii) The totally geodesic V.-, tmmersed in the 2-symmetric V,
s also 2-symmetric.

(iv) The semi-geodesic V.., immersed in the 1-flat V. is also
1-flat.

(v) The semi-geodesic V., immersed in the 0-symmetric V, is
also 0-symmetric.

In conclusion I wish to express my cordial thanks to Prof. K.
Yano for his kind guidance and many benefical suggestions.



