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90. The Exceptional Values of Functions with te Set
of Linear Measure Zero of Essential

Singularities, 11.

Tokyo yoi Kot-ihan-Gakko, Koiikawa, okyo.

(mm. by . Kz, x.., Ot 12, 194.)

1. Let D be a domain and E be a compact sub-set, of D, of
linear measure zero in the sense of Carath(lory.

If w=f(z) is regular in D-E and has E as its essential singu-
larities, then, near each point Zo e E, f(z) takes every finite value
perhaps those belonging to a set of Newtonian capacity oro. This
result, an extension of the one obtained by M.L. Cartwright1) was
proved in our former Note with the same title as the present one,
Proc. 17 (1941).

Now, according to the result obtained recently by the present
author, a set of Newtonian capacity zero may be the sum of enumerably
infinite sets of Carathodory’s linear measure-finite, so that the ex-
ceptional set stated above might be of linear measure positive.

In this note, we shall show that the intersection of the exceptional
set with any straight line is of linear measure zero.

2. We shall denote by mE) Carathdory’s lineare measure8 or
the length of E, by E the complementary set of E, and by {p; P}
the set of all the points p with the property P.

Lemma 1. Let F be a closed set on a rectifiable Jordan arc L4 and
of positive linear measure. Then there ezists a point o e F such that

Ir.Ad = 0

for every suently s.mall arc A( L) containing
Proof. Let L be represented by the equation"

with the arc length s as its parameter.
Then, at almost every point of s, ’(s) exists and ’(s)
Writing C(s)=e’, ((s); real), we have

1) M.L. Cartwright. The exceptional values of functions with a non-enumerable
set of essential singularities, Quart. J. Math., Vol. 8 (1937).

2) S Kametani. On some properties of Hausdorff’s measure and the concept of
capacity in generalized potentials, Proc. 18 (1942).

3 S. Saks. Theory of the Integral (1937), p. 53.
4) We may suppose that the set F does not contain any of the end points of L.

Wc suppose it hereafter, if necessary, without explicitly saying so.
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where M-- (s (s) e F) and I-- {s,; (s) e A).
By Lebesgue’s theory on the differentiation of the indefinite integral,

we have at almost every point S-So e M

1
re(I)..

as re(I) -- 0 where I so, whence we have also

if I0) is suffieiently mll. 8inee the e A errlndin t I
eontain the lint ’,=(), r lemm i proved.

Lamina 2. Let F be a closest set on e rectifiable Jordan are L
and of positive linear measure. Then the regular function defined by
th following integral

H(w)-- ._
is non-constant in F.

Proof. Supposing the contrary, let H(w) be a constant in F’. Then,
we would have

IvI-I(w)dw= O
for any rectifiable dosed Jordan curve C not meeting F.

We distinguish here two case
1) If F contains continuums, then it contains an arc A L

such that near both end points of A, we can find small arcs ( L}
which do not meet F.

Therefore, we can find an arc A’ A with both end points F,
as near to A as we may.

Since A,d--, IAd when A’-* A, and Id=,-0:4=O, where 0
and 1 are both end points of A, we have, for some arc .A’ with both
end points F,

.) If F d nt entin xy entinuum, then near every lint
of F, we may find.small .arcs (. L)which-do not mt F. Now
choose a point 0 stated in Lamina 1.

Then, for every small arc A o,
f dZ.0.JF-A

Therefore we can find also an arc A A, A 0 with both end-
points not belonging to F such that



440 S. K,SL [Vol. 19,

In both cases, there exists a closed rectifiable Jordan curve C
which contains A’ in its interior, exvept both end points, and does not
mee F.

Since F and C are compact, the distance of them is positive and
the funetion (-w)-1 for e F and w e C is bounded, which enables
us to invert the order of integration as follows"

---2- d=F.A" 2hi f.A,

in which we notice I __1___ dw=O for . exterior to C.

Thus we arrive at a contradiction, and our lemma is proved.
Let L" =(2) (0 2 1) be a rectifiable Jordan arc, and w any

point outside L. Dividing L into a finite number of sub-arcs

L" =() (_, _<_ __< )
by a finite number of arbitrary points on L, =(2), 0--2o < 21 <---
< 2m-1 < 2m 1.

We consider the angle _, made by the vector w to the

vector -lw, whose value is uniquely determined by the condition that
_.16 should be a continuous function of along L and _@_=0.
Thus ’_’ becomes a single-valued function of w outside L. Next
we shall consider the sum of the angles thus determined"

Let its upper bound, varying the mode of division of L, be
V(w, L). We shall write"

V(L)=sup V(w, L)

It is evident that if L is a straight line, then V(L) is finite and =r,
and more generally, if L is a bounded convex arc, then V(L) is also
finite.

Lemma 3. Let F be a closed set of positive length on a rectifiable
Jordan arc L with

Then, there ts a function G(w) with the followiny pt’operties"
G(w) is

(1) a uniform (single-valued), analytic function of w in Fc,
(2) non-constant

and (3) bounded.
Proof. From the fact that F is a set e3, we may find a

descending sequence {@)} of sets which are open in L and satisfying

lira @)= H 0=F,
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Since O")C::)F) is open in L, it consists of a sequence {A")} of
arcs which are open in L and any two of them do not meet, where
we may suppose, by Borel-Lebesgue’s theorem, that {A) consists of
a finite number of such arcs.

The sum of such arcs, depending on n, will be denoted by a(n).
Then F a(n) 0), whence

(1) lim a(n) F.

Fixing n for a moment, let the arcs of

=(), (? < ( < 2() and

At a point of the ar ,,, the closur of a,,, let us fix, anyt
of the analytic function log (w-) of the variable and continuat it
nalytically ahmg . The function thus defined along u be denoted
atso b a (w-O.

Then we have evidently

(2) lg (w-2))-lg (w-)) I d ----I d
a. w- w-

where (D__(Z()) and )--(z()).
From the right-hand side of the above relation, we find that (2)

represents a uniqudy defined, single-value
which is independent of the spedal chowe of log (w-O.

It is also evident that

Let us consider, depending on n now, the following function"

Then we have evidently

(8) @A.(w) l--l @{log (w-))-log(w-2)} V(L)

It is also evident from (2) that

A(w)= I)
We have from above and (1)

which will be denoted by H(w). By Lemma 2, H(w) is not a con-
stant and by (3) we have in the limit

(4) iH(w) l_<_ V(L).
Let us consider next the following function:

G(W)fe-H(,)
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From J(-iH(w))=H(w) and (4), we have for w c F

G(w) ]=e"’(’’’) ev(r’)

from which follows the boundedness of G(w).
Since H(w) is a non-constant, single-valued, analytic function, so

is the function G(w) for w e Fc, which proves our lemma completely.
3. Theorem A. Let D be a domain and E be a compact sub-set

of linear measure 0 lying in D. If’ w=f(z) is regular in D-E and
has E as its essential singularities, let us denote by S the set of all
the finite values which are not assumed by f(z) in D-E" S= (,v ,v=f(z)
for zeD-E}.

Then the intersection qf S with any rectifiable Jordan arc L such
that V(L) < oo is of linear measure zero.

Proof. The proof is chiefly depends on Lemma 3.
Supposing the contrary, let L be an arc such that

m(L.S) > 0 and V(L) < o

As L and S are closed sets, F=L.S is a closed set.
By Lemma 3, there exists a single-valued, bounded, and non-

constant analytic function G(w) defined f(r all values of F".
Let us nov consider the following function"

q(z) G[f(z)l
Since G(w) is bounded and single-valued outside _s’ whose values

are not taken by f(z) in D-E, (z) is a single-valued bounded analytic
function in D except for the set E of linear measure O. Then, by
Besicovitch’s theorem which we have also used already in our former
note, (z) becomes regular analytic throughout D, if properly defined
on E.

G(w) being not a constant, we can find two values w’ and w" e Fc,
such that

(5) G(w’) :@ G(w").

But, since the set of values taken by f(z) in every neighbourhood
of each z0 e E is everywhere dense by Besiovitch’s theorem1), we can
find two sequence of points {z’} and {z’’} both tending to the point
zt, and satisfying

f(z’,,) v’ and f(z’,,’) w" as -- o.Then, we would have

ZcO(z0) =lim 4)(z’) =lim G[f()]=G(w’)

and also

(z0) lim )(z’)= G(w")

wldn is impossible on account of (5), and our theorem is proved.

1) A.S. Besicovitch. On sufficient conditions for a function t,) be analytic, etc
Proc. Iondon Math. S0c. (2) Vol. 32 (1931).
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AS a corollary of he above heorem, we have immediately:
Theorem B. Under t sam assumption of Theorem Yi, the intersec-
tion of S with any straight lin or any coavex arc is of linear measura

Theorem A may be slightly generalized by the typical argument
as follows:
Theorem C. U the same assumption of Theorem A, let be th
set of all th fini values not assumed ar assumed only a finite number
of times by f(z) near ze E, then the intersection of with any
rectifiable Jordan arc L such that V(L) +oo is of linear measure
gero.

Proof. Noticing that E does not. contain any contanuum, them
exists for z, e E a sequence of open domains (D) with the following
properties"

1 D=DD:,..

2 (D.)--0 as --oo, where $(D.)=sup [z’:-z"[,

3 each E=D.E is a closed set.

For each u, let us put

S,---{w; f(z) for zeD,-E).
Then by 1 and 3, S
Writing S= S. we find the intersection of S with any rectifiable

arc L such that V(L)<Y. is of linear measure 0, since, by Theorem
A, we have

m(S.L) , m(S,.L)=O

Now it is evident by 2 that any finite value S is assumed by
f(z) infinitely many times near which proves our theorem completely.


