87. On the Representation of Boolean Algebra.

By Noboru Matsuyama.
(Comm. by M. Fujiwara, m.l.a., Oct. 12, 1943.)

1. Representation theory of Boolean algebra was developed by Stone, Wallman and many writers. Wallman's ${ }^{1)}$ method is simpler than that of Stone ${ }^{2)}$ in the point that the notion of ideal is not used. The method of Livenson ${ }^{3)}$ is complicated than that of Wallman. But if we replace the regular table of Livenson by the set satisfying conditions $\left(1^{\circ}\right),\left(2^{\circ}\right)$ and $\left(4^{\circ}\right)$ in $\S 2$, then the maximal regular table becomes a ideal basis. Further we can prove that the representation space of Livenson becomes a T_{2}-space satisfying the first countability axiom.
2. Let L be a distributive lattice including 0 and 1 . That is, L is a lattice having zero element 0 and unit element 1 and for any three elements a, b and c

$$
a(b \vee c)=a b \vee a c \quad \text { and } \quad a \vee b c=(a \vee b)(a \vee c)
$$

Now we consider a subset $\{g\}$ of L satisfying the following conditions:
(1 $\left.{ }^{\circ}\right) ~ 0 \bar{\epsilon}\{g\}$.
(2) If $g_{1}, g_{2} \in\{g\}$ then there exists g_{3} such that $g_{3}<g_{1} g_{2}$.

In such two sets $\{g\}$ and $\left\{g^{\prime}\right\}$, if for any $g \in\{g\}$ there exists $g^{\prime} \in\left\{g^{\prime}\right\}$ such that $g^{\prime}<g$ then we write

$$
\{g\}<\left\{g^{\prime}\right\} .
$$

Further we will introduce two conditions concerning $\{g\}$ in L :
(3°) For $\{g\}$ and any two elements a and b such as $g(a \vee b)=g$ there exists $g_{1} \in\{g\}$ such that $g_{1} a=g_{1}$ or $g_{1} b=g_{1}$.
(4) For $\{g\}$ and any $a \in L$ there exists $g \in\{g\}$ satisfying $a g=g$ or $a g=0$.

Lemma 1. Under (1°) and (2°), (4°) implies (3°).
Suppose that $\{g\}$ satisfies $\left(1^{\circ}\right)$, $\left(2^{\circ}\right)$ and (4°) and a and b are any elements satisfying $(a \vee b) g=g$ for some $g \in\{g\}$. Then there exist g_{1} and g_{2} such that $a g_{1}=g_{1}$ or $a g_{1}=0$ and $b g_{2}=g_{2}$ or $b g_{2}=0$. If $a g_{1}=b g_{2}$ $=0$, then $g_{3}<g<a \vee b$ for $g_{3}<g g_{1} g_{2}$. Hence $0=a g_{3} \vee b g_{3}=(a \vee b) g_{3}$ $=g_{3}$. This is a contradiction.

Lemma 2. Suppose that $\{g\}$ satisfies (3°) (or (4°)) and $\{g\}<$ $\left\{g^{\prime}\right\}<\{g\}$. Then $\left\{g^{\prime}\right\}$ satisfies (3°) (or (4°)).

Suppose that $\{g\}$ satisfies (3°) and that a and b are any two elements satisfying $(a \vee b) g^{\prime}=g^{\prime}$ for some $g^{\prime} \in\left\{g^{\prime}\right\}$. If $g g^{\prime}=g$ then $g(a \vee b)=g$. Consequently there exists $g_{1} \in\{g\}$ such that $a g_{1}=g_{1}$ or

[^0]$b g_{1}=g_{1}$. If $g_{1}^{\prime} g_{1}=g_{1}^{\prime} \in\left\{g^{\prime}\right\}$, then $a g_{1}^{\prime}=g_{1}^{\prime}$ or $b g_{1}^{\prime}=g_{1}^{\prime}$. The proof of remaining part is easy.

Lemma 3. For any $\{g\}$ satisfying $\left(1^{\circ}\right)$ and $\left(2^{\circ}\right)$, there exists $\left\{g^{\prime}\right\}>\{g\}$ satisfying the condition (4 4°.

Let $a g \neq g$ and $a g \neq 0$ for some a and for every $g \in\{g\} . \quad\{g\}^{1} \equiv$ ($g, a g ; g \in\{g\}$) satisfies (1°) and (2°). If $\{g\}^{1}$ satisfies (4°) then it is a desired one. Otherwise we next construct $\{g\}^{2}$ from $\{g\}^{1}$ similarly as $\{g\}^{1}$ obtained from $\{g\}$. We suppose that $\{g\}^{a}$ is defined for all $\alpha<\beta$, where β is an ordinal, such that $\{g\}^{a} \subset\{g\}^{a^{\prime}}\left(\alpha<\alpha^{\prime}<\beta\right)$ and each $\{g\}^{\alpha}$ satisfies (1°) and (2°). When β is an isolated number, we can construct $\{g\}^{\beta}$ from $\{g\}^{\beta-1}$ as above. When β is a limiting number, we define $\{g\}^{\beta}$ as the set of all elements in $\{g\}^{\alpha}(\alpha<\beta)$. Evidently $\{g\}^{\beta}$ satisfies $\left(1^{\circ}\right)$ and $\left(2^{\circ}\right)$. Thus we get a transfinite sequence $\{g\}^{r}$ containing $\{g\}$. On the other hand, since L has a fixed cardinal number and $L-\{0\}$ satisfies $\left(1^{\circ}\right),\left(2^{\circ}\right)$ and $\left(4^{\circ}\right)$, this process stops at some r. Then $\{g\}^{r}$ is the desired one.

Lemma 4. In the above lemma we can replace (4°) by (3°).
Proof is easy.
Let (5) be a set of all $\{g\}$ satisfying $\left(1^{\circ}\right)$ and $\left(2^{\circ}\right)$. If $\{g\}<$ $\left\{g^{\prime}\right\}<\{g\}$ in (8) we write by $\{g\} \equiv\left\{g^{\prime}\right\}$. For $a \in L$ the set of all $\{g\} \in \mathbb{C}$ such as $g<a$ for some $g \in\{g\}$, is denote by $\mathbb{C}(a)$. \&FE is a transformation from L onto subset of © . We have

Lemma 5. © is a lattice-homomorphism, and $\mathfrak{C}(0)=0$ and $\mathfrak{C}(1)=\mathbb{C}$. Proof is easy.
If we define the closed set in $\dot{\mathscr{C}}$ by the product of finite or infinite $\mathfrak{E}(a)$, then we have.

Theorem 1. If every element $\{g\}$ of \mathbb{G} satisfies $\left(3^{\circ}\right)$, then $(\mathbb{S}$ is a T_{0}-space.

Proof. Evidently © is a T-space. In order to prove that (S is T_{1}-space, it is sufficient to prove that $\{g\} \neq\left\{g^{\prime}\right\}$ implies $\overline{\{g\}} \neq \overline{\left\{g^{\prime}\right\}}$. Let $\overline{\{g\}}=\overline{\{g\}}$, then $\{g\},\left\{g^{\prime}\right\} \in \overline{\{g\}}=\overline{\left\{g^{\prime}\right\}}$. If $g \in\{g\}$ then $\{g\} \in \mathbb{E}(g)$ and $\mathfrak{F}(g)$ is a closed set. Hence $\left\{g^{\prime}\right\} \in \mathbb{E}(g)$ and $g^{\prime}<g$ for some $g^{\prime} \in\left\{g^{\prime}\right\}$. By the same way for any $g^{\prime} \in\left\{g^{\prime}\right\}$ there exists $g \in\{g\}$ satisfying $g<g^{\prime}$. Thus we have $\{g\} \equiv\left\{g^{\prime}\right\}$. This is impossible.

Theorem 2. If every $\{g\} \in \mathbb{B}$ satisfies $\left(3^{\circ}\right)$, then $\mathbb{C B}$ is a T_{1}-space when and only when every $\{g\}$ satisfies (4°).

Proof. Since (G) is a T_{0}-space, it is sufficient to prove that $\overline{\{g\}}=\{g\}$ for every $\{g\} \in \mathbb{C}$. Now let $\{g\} \neq\left\{g^{\prime}\right\}$ and $\{g\},\left\{g^{\prime}\right\} \in \overline{\{g\}}$. Then $\left\{g^{\prime}\right\} \in \mathscr{G}(\bar{g})$ for any $g \in\{g\}$, or there exists $g^{\prime} \in\left\{g^{\prime}\right\}$ such as $g^{\prime}<g$ i. e. $\{g\}<\left\{g^{\prime}\right\}$. On the other hand for any $g^{\prime} \in\left\{g^{\prime}\right\}$ there exist $g_{1} \in\{g\}$ such that $g_{1} g^{\prime}=g_{1}$ or $g_{1} g^{\prime}=0$. If $g_{1} g^{\prime}=0$ then we have g_{1}^{\prime} and g_{2}^{\prime} such that $g_{1}^{\prime} g_{1}=g_{1}^{\prime}$ and $g_{2}^{\prime}<g_{1}^{\prime} g^{\prime}$. Since $g_{2}^{\prime}=g_{2}^{\prime} g_{1}<g_{1}^{\prime} g^{\prime} g_{1}=g_{1}^{\prime} g^{\prime}=0$. This is impossible. Hence $g_{1} g^{\prime}=g_{1}$, or $\{g\}>\left\{g^{\prime}\right\}$. i. e. $\{g\} \equiv\left\{g^{\prime}\right\}$, which is a contradiction. Conversely let (5) be a T_{1}-space, and let $a g \neq g$ and $a g=0$ for $\{g\} \in \mathbb{G}$ and some a. ($a g, g ; g \in\{g\}$) satisfies (1°) and (2°). Hence there exists $\left\{g^{\prime}\right\}>\{g\}$ satisfying $\left(3^{\circ}\right)$. Evidently $\{g\} \leqq\left\{g^{\prime}\right\}$. Since $\{g\} \bar{\epsilon} \xi(a)$ and $\left\{g^{\prime}\right\} \in \mathscr{E}(a), \overline{\left\{g^{\prime}\right\}}=\{\bar{g}\}$ or $\{g\}=\left\{g^{\prime}\right\}$. This is a contradiction.

Theorem 3. If every $\{g\} \in \mathbb{C}$ satisfies $\left(3^{\circ}\right)$, then $\mathbb{C S}$ is the bicompact space.

Proof is analogous to the Wallman's corresponding theorem.
Theorem 4. If L is a Boolean algebra and every $\{g\}$ of (S) satisfies (3°), then (5) is a T_{2}-space.

Proof. If L is a Boolean algebra, $\mathfrak{C}^{\prime}(a)=\mathfrak{F}\left(a^{\prime}\right)$ is evident, where $\mathbb{E}^{\prime}(a)$ is a complement of $\xi(a)$. Hence each $\mathfrak{G}(a)$ is an open and closed set simultaneously. Let $\{g\} \neq\{h\}$. Since \mathbb{E} is a T_{σ}-space there exists a neighbourhood of $\{g\}$ (or $\{h\}$) which does not contain $\{h\}$ (or $\{g\}$). For instance let a neighbourhood ($\Pi \mathfrak{C}(a))^{\prime}$ of $\{h\}$ does not contain $\{g\}$. Then

$$
\{h\} \in(\Pi \mathfrak{C}(a))^{\prime}=\Sigma \mathfrak{C}^{\prime}(a)=\Sigma \mathfrak{E}\left(a^{\prime}\right)
$$

or $\left\{h \mid \in \mathfrak{E}\left(a^{\prime}\right)\right.$ for some a^{\prime}. On the other hand $\{g\} \bar{\epsilon}(\Pi \mathfrak{F}(a))^{\prime}=\sum \mathfrak{E}\left(a^{\prime}\right)$, or $\{g\} \bar{\in} \mathbb{E}\left(a^{\prime}\right)$, or $\{g\} \in \mathbb{E}(a)$. Consequently \mathbb{E} is a T_{2}-space.

Theorem 5. Let L be a Boolean algebra, and © be the set of $\{g\}$ satisfying (1°) and (2°). Then $(\mathbb{S}$ satisfies the first countability axiom if and only if each $\{g\}$ of © contains at least countable elements.

Proof. By theorem $4\{\mathscr{E}(a) ; a \in L\}$ is an open basis of \mathbb{G}. Let $\{g\} \equiv\left\{g_{n}\right\}$ and $\{g\} \in \mathfrak{F}(a)$, then $\left\{g_{n}\right\} \in \mathfrak{E}(a)$. Hence $\left\{g_{n}\right\} \in \mathfrak{F}\left(g_{n}\right) \subset \mathbb{E}(a)$. That is, $\left\{g_{n}\right\}$ has a complete system of countable neighbourhood. Conversely if for each $\{g\} \in(\$ S$ there corresponds a complete system of countable neighbourhoods $\left\{\mathfrak{E}\left(g_{n}\right)\right\}$, then $\{g\} \in \mathbb{E}\left(g_{n}\right)(n=1,2, \ldots)$. Since $\mathfrak{F}\left(g_{n}\right) \neq 0$ for $n=1,2, \ldots, g_{n} \neq 0$, for any $\mathfrak{E}\left(g_{n_{1}}\right)$ and any $\mathfrak{E}\left(g_{n_{2}}\right)$ there exists $\mathfrak{F}\left(g_{n_{3}}\right)$ such that $\mathfrak{F}\left(g_{n_{1}}\right)$. $\mathfrak{F}\left(g_{n_{2}}\right)>\mathscr{F}\left(g_{n_{3}}\right)$ or equivalently $g_{n_{1}} g_{n_{2}}>g_{n_{3}}$.

If $g_{n}(a \vee b)=g_{n}$ for some a and b, then $\{g\} \in \mathbb{E}\left(g_{n}\right) \subset \mathfrak{F}(a) \dot{+} \mathfrak{C}(b)$. Hence $\{g\} \in \mathfrak{E}(a)$ or $\{g\} \in \mathbb{E}(b)$. Equivalently $g<a$ or $g<b$. By the above consideration $\left\{g_{n}\right\} \in \mathbb{G}$ and then we can easily prove that $\left\{g_{m}\right\}$ $\equiv\{g\}$. For, since $\{g\} \in \mathfrak{F}\left(g_{n}\right)$ there exists $\{g\} \in\{g\}$ such as $g<g_{n}$. Conversely, since $\left\{\mathscr{E}\left(g_{n}\right)\right\}$ is a complete system of neighbourhoods, for any open set $\mathfrak{F}(g)$ there exists $\mathfrak{E}\left(g_{n}\right)$ such that $\mathbb{F}\left(g_{n}\right) \subset \mathfrak{F}(g)$. Or equivalently $g_{n}<g$. That is, $\{g\} \equiv\left\{g_{n}\right\}$.

[^0]: 1) H. Wallman, Lattice and topological Spaces (Ann. Math., Vol. 39 (1938)).
 2) H. Stone, Topological Representations of Distribative Lattice and Browerian Logics. (Casopic pro pestovani matematiky a fysiky 1939).
 3) E. Livenson, On the realization of Boolean algebras by algebras of sets (Rec. Math. de la Soc. Math. de Moscou (1940)).
