
[vo. 19

87. On the Representation of Boolean Algebra.

By Noboru MATSUA
(Comm. by M. FUJIWARA, r.LA., Ock 12, 1943.)

1. Representation theory of Boolean algebra was developed by
Stone, Wallman and many writ. Wallman’s1 method is simpler
than that of Stone’.) in the point that the notion of ideal is not used.
The method of Livenson3) is complicated- than that of Wallman. But
if we replace the regular table of Livenson by the set satisfying con-
ditons (1), (2) and (4) in 2, then the maximal regular table be-
comes a ideal basis. Further we can prove that the representation
space of Lvenson becomes a T.ospace satisfying the first countability
axiom.

2. Let L be a distributive lattice inc|llding 0 and 1. That is, L
is a lattice having zero element 0 and unit element 1 and for any
three elements a, 5 and c

a(b / c)=ab v ac and a / bc=(a / b) (a ,,/c).

No we consider a subset {g} of L satisfying the following con-
ditions"

(1
(2) If g, gze {g} then there exists g3 such that g <= gg.
In such two sets (g} and (g’}, if for any g e(g} there exists

g’e (g’} such that g’ <: g then we write

{g} < {}.

Furtter we will introduce two conditions concerning {g} in L"
(3) For {g} and any two elements a and b such as g(a /b)=g

there exists ge{g} such that ga=g or gb--g.
(4) For {g} and any a e L there exists g e {g} satisfying ag=g

or ag=O.
Lema 1. Under (1) and (2), (4) implies (3).
Suppose that {g} satisfies (1), (2) and (4) and a and b are any

elements satisfying (a v b)g=g for some g e (g}. Then there exist g
and g. such that ag--g or ag 0 and bg g or bg-- O. If ag bg.
--0, then g a /b for g ggg. Hence O=ags /b.g’-(a /b)g
=g This is a contradiction.

Lema . Suppose that {g} satisfies (3) (or (4)) and {g}
{g’} {g}. Then {g’} satisfies (3) (or (4)).

Suppose that {g} satisfies (3) and that a and b are any two
elements satisfying (a v b)ff=g’ for some g’ e{g’}. If gg=g then
g(a /b) g. Consequently there exists g e {g} such that ag=g or
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bgl=gl..If ggl=ge(g}, then ag=g or bg=g. The proof o re-
maining part is easy.

Lemmd $. For any {g) satisfying (1) and (2), there exists
(g) (g) satisfying the condition (4).

Let ag g and ag 0 for some a and for every g e (g}. (g)l=_
(g, ag; ge(g}) satisfies (1) and (2). If (g}l satisfies (4) then it is
a desired one. OtherwiSe we next construct (g)2 from (g}l similarly
as (g} obtained from (g}. We suppose that (g)a is defined for all
a < {, where is an ordinal, such that (g)a {g}’ (a < a’ ) and
each (g} satisfies (1) and (2). When is an isolated number, we
can construct (g) from (g}- as above. When { is a limiting number,
we define (g} as the set of all elements in (g} (a < {). Evidently
(g} satisfies (1) and (2). Thus we get a transfinite sequence (g)r
containing (g). On the other hand, since L has a fixed cardinal
number and L-{0) satisfies (1), (2) and (4), this process stops at
some r: Then (g}r is the desired one.

Lemm ,. in the above lemma we can replace (4) by (3).
Proof is easy.
Let ( be a set of all (g} satisfying (1) and (2). If {g)<

{g’} <:: (g) in $ we write by (g)--:{g’}. For a eL the set of all
{g}e( such as g <:: a for some g e (g}, is denote by (a). { is a
transformation from L onto subset of (. we have

Lemma 5. is a lattice-homomo’phism, and {(0)=0 and {(1}--..
Proof is easy.
If we define the closed set in ( by the product of finit or infinite

{(a), then we have.
Theorem 1. If every element {g} of ( satisfies (3), then ( is a

T0-space
Proof. Evidently ( is a T-space. In order to prove that ( is

T-space, it is sufficient to prove that (g) = {g’) implies (g-- {’--.
Let {g} = {g}, then {g}, (f} e {g} {g’}. If ge {g} then {g) e {(g)
and (g) is a closed see Hence {g’}e {{g) and g’ <::g for some g’ e {f}.
By the same way for any g’ e {g’} there exists g e {g} satisfying g < g.
Thus we have {g} {g’}. This is impossible.

Theorem . If every {g} e( satisfies (3), then $ is a Tz-space
when and only when every {g} satisfies (4).

Proof. Since ( is a T0-space, it is sufficient to prove that {g} {g}
for every {g}e(. Now let {g} {g’} and {g}, {g’}e{g}. Then
(g’} e () for any g e (g}, or there exists g’ e (g’} such as g < g i.e.
(g) < {g’}. On the other hand for any g’e (g’} there exist gle{g}
such that gg’=gl or gg’=O. If gg’ =0 then we have g and g such
that gg g and g < gg’. Since g-- g. g <: g g’g--gq’-- 0. This is
impossible. Hence gg’=g, or (g} > (g’}. i.e. {g}.------- (g’}, which is a
contradiction. Conversely let ( be a Tl-space, and let ag g and
ag=O for (g} e ( and some a. (ag, g; g e {g}) satisfies (1) and (2).
Hence there exists (g’} (g} satisfying (3). Evidently (g} "< {g’}.
Since (g} e(a) and (g’} e (a), (g’) g} or (g} {g’}. This is a
contradiction.
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Theorem 8. If every (g)e( satisfies (3), then { is the bicom-
pact space.

Proof is analogous to the Wallman’s corresponding theorem.
Theorem . If L is a Boolean algebra and every

satisfies (3), then ( is a Ts-space.
Proof. If L is a Boolean algebra, ’(a)--a’) is evident, where

t(a) is a complement of (). Hence each {(9) is an open and closed
set simultaneously. Let {9} (h}. Since ( is a To-space there exists
a neighbourhood of (9) (or (h))which does not contain (h) (or (9)).
For instance let a neighbourhood (//(9))’ of {h) does not contain
Then

or /z e {(9’) or some 9’. On the other hand (#) (//())’--
or (g} (’), or (g)e (). Consequent|y ( is a Ts-space.

Theorem 5. Let L be a Boolean algebra, and ( be the set
{#} satisfying (1) and (2). Then ( satisfies the first countability
axiom if and only if each (9) o ( contains at least countable elements.

Proof. By theorem 4 (((a);eL} is an open basis of (. Let
{g) =-- {9) and {g) e (), then {g) e (). Hence {g) e (g) (().
That is, (g) has a complete system ot countable neighbourhood.
Conversely if for each (g)e( there corresponds a complete system
countable neighbourhoods ({(9)), then (9) e (g) (n= 1, 2, ...). Since
(g) = 0 for n=l, 2, ..., g : 0, tor any (g,) and any (g) there

exists (g) such that (9,). {(g)((g) or equivalently g,,g, g,.
If g(a x/b) g for some a and b, then {g) e (g) (()4- ((b).

Hence (g) e (a) or (g) e ((b). Equivalently g (t or g (b. By the
above consideration (g)e( and then we can easily prove that (g,)

(9). For, since (g) e ((g) there exists (g) e {g) such as g ( g.
Conversely, since ((g)) is a complete system of neighbourhoods, for
any open set (g) there exists (g) such that ff(g) (((g). Or equiva-
lently g (g. That is, (g) =-- {g).


