424 [Vol. 19,

86. Notes on Banach Space (VII): Compactness of Function Spaces.

By Gen-ichirô SUNOUCHI. (Comm. by M. Fujiwara, M.I.A., Oct. 12, 1943.)

Recently Prof. Izumi¹⁾ has derived from his key theorem the following theorem.

A set \Re in E where E is (C), (L^p , $\infty > p \ge 1$), etc. is compact when and only when

$$1^{\circ} ||f(x)|| \leq M \quad \text{for all } f(x) \in \mathfrak{F},$$

$$2^{\circ} \lim_{\delta \to 0} \frac{1}{\delta} \int_{0}^{\delta} f(x+t)dt = f(x) \qquad \text{uniformly in } \mathfrak{F}.$$

These conditions are of the Kolmogoroff²-Tulajkov³ type. But there are conditions of the Arzèla-M. Riesz⁴ type. In the present note the author establishes an abstract theorem of the latter type.

Theorem. Let E be a Banach space satisfying $\lim_{t\to 0} ||f(x+t) - f(x)|| = 0$. If 1° and 2° are compactness conditions of a set \Re in E, then they are equivalent to the following

$$1^{\circ} \|f(x)\| \leq M \quad \text{for all } f(x) \in \mathfrak{F},$$

$$2^{\infty} \lim_{t\to 0} ||f(x+t)-f(x)|| = 0$$
 uniformly in §.

Proof. Necessity. 1° is evident. If \mathfrak{F} is compact, then it is totally bounded. So for any e > 0, there are $f_1, f_2, ..., f_n$ in \mathfrak{F} such that for any $f \in \mathfrak{F}$ there is a k such as $||f - f_k|| < e$. Since $\lim ||f(x+t) - f(x)|| = 0$, we have

$$||f(x+t)-f(x)|| = ||f(x+t)-f_k(x+t)+f_k(x+t)-f_k(x)+f_k(x)-f(x)||$$

$$\leq ||f(x+t)-f_k(x+t)|| + ||f_k(x+t)-f_k(x)|| + ||f_k(x)-f(x)||$$

$$\leq 3e.$$

Thus we get $2^{\circ \circ}$, and then the necessity of the condition.

Sufficiency. We suppose that f(x+t)-f(x) is an abstract function of t whose range lies in E. Then the function is measurable in the Bochner sense⁵. For any e>0, there is a $\delta=\delta(e)$ such that $||f(x+t)-f(x)|| < e \ (|t|<\delta)$. Therefore f(x+t)-f(x) is bounded and then it is integrable in the Bochner sense.

By 2^{∞} ,

¹⁾ S. Izumi, Proc. 19 (1943), 99-101.

²⁾ A. Kolmogoroff, Göttinger Nachrichten, (1931), 60-63.

³⁾ A. Tulajkov, ibid., (1933), 167-170.

⁴⁾ M. Riesz, Acta Szeged, 6 (1932-34), 136-142.

⁵⁾ S. Bochner, Fund. Math., 20 (1933), 262-276

$$\left\| \frac{1}{\delta} \int_0^{\delta} f(x+t)dt - f(x) \right\| = \frac{1}{\delta} \left\| \int_0^{\delta} \left(f(x+t) - f(x) \right) dt \right\|$$

$$\leq \frac{1}{\delta} \int_0^{\delta} \| f(x+t) - f(x) \| dt \leq e$$

uniformly in \mathfrak{F} . Thus we get 2° and then \mathfrak{F} is compact from Izumi's theorem.

.