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Mathematical Institute, Osaka Imperial University.

(Comm. by T. TAKAGI, M.LA., Dec. 13, 1943.)

In this paper we shall study compact or locally compact topologi-
cal rings, where, by a topological ring, we mean a ring with topology
with respect to which the operations x-y and -y are continuous as a
unction of two variables. We do not assume that the multiplication
is commutative When a topological ring R is observed as an abelian
group with respect to addition, R is denoted by G. In 1, we shall
discuss the case when R is compact, by representing R as the ring o
endomorphisms o the character group G* o G. In 2, we shall give
some remarks on locally compact rings by making use of the results
obtained in 1.

1. Let R be a compact topological ring, and G* the character
group of R G). The mapping x-- (p, z), where e G, o e G*, and
a e R is fixed, gives rise to a new character 0ape G* which is defined
by (0ap, )--(p, xa). It is easy to see that p-0p is an endomorphism
of G* into itself. The set o all endomorphisms 0 o G*, where a
runs through R, is denoted by R*. Clearly O+b--O-l-Ob and 0b----0a0b.
Thus --" # determines a homomorphism F from R onto R*.

Let us introduce a topology into the, ring 8 o all endomorphisms
# of G*I). To this end it suffices to give a system o neighborhoods
o the zero endomorphism. We define a neighborhood o zero as ollows

for all F. i= l, ..., n},
where e G*, i 1, ..., n, F is an arbitrary compact set in G, and e 0
is an arbitrary positive number. With respect to this topology, 8 is
obviously a topological ring. As a subset o 8, R* is also topologized.
We shall now prove that F is continuous as a mapping of R onto R*.
For this purpose let us consider the set

A={alaeR, ](07,,x) -Ce for all :eF, i=l,...,n}
={[e/i, I(o,a) <e for all N, i=1,...,,},

where oe*, i=l, ..., , is an arbitrary compact set in , and
> 0 is an arbitrary positive number. We first note that, for any

7 e G*, {:c (, x) } is an open set in G. Then, by appealing to
the following lemma, it is easy to see that A is an open set in G,
which implies that F is continuous.

Lemma. Let F be a compact set in R, and let be an open set

I) S. Kakutani informed the author of the fact that the topological ring 8 had
been discussed by M. Abe in his note- Jber die Automorphismen der lokalbikompak-
ten abelschen Gruppen, Proc. 15 (1940), 59.
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n R. If Fao U for ,ome aoe R, then there exists a nei@hborhood
V(ao) of ao such tha FV(ao) U.

This lemma follows easily from the continuity of multiplication
and the compactness of F.

Now, for any fixed e G*, the mapping t-8 from 8 into G*
is continuous. (This proposition is an immediate consequence of the
definition of topology in 8). Consequently the mapping a-*8
from R into G* is also continuous. As a continuous image of a com-
pact set R, the set C={:tlaeR} must also be compact. Since G*
is a discrete space as the character group of a compact abelian group
G, so we see that C is a finite set.

Theorem 1. There exists no compact and connected topological
ring except the t’fivial one in which the product of any two
is always the zero t.

Proof. Let R be a compact and connected ring. Then the set C
defined above consists only of one element; for it is a finite and con-
nected set in G*. This element must be the zero character; for the
set C contains Lhe image of the zero element of R. From this follows
that each element of R is a left total zero divisor), and consequently
the product of any two elements of R is zero.

From now on we assume that no element of R is a left total zero
divisor. This assumption is fulfilled if, for example. R contains a unit
element or if R has no nilpotent ideal. As is easily verified, under
this assumption, the homomorphism /" defined above is an isomorphism.

Theorem . A compact ring without left (or right)) total zero
divisor is totally disconnected.

Proof. Let R be a compact ring without left total zero divisor.
We construct the product space 12=Peo.C of all C, running
through G*, and introduce the usual weak topology of Tychonoff into
.q.

Let us consider the correspondenee between a eR and
where w= {#a] e G*}. This is a one-to-one correspondence, since R
has no left total zero divisor. Further we may conclude, from the
compactness of R and the continuity of the mapping a--,#,, that the
mapping a-w is a homeomorphism. This last statement follows
from the continuity of the mapping a--)0 for fixed e G*, and from
the fact that 9 is topologized by the Tychonoff topology. Thus R is
homeomorphic with a subset of Y2 which is totally disconnected as a
product space of finite sets C. This completes the proof of Theorem
2 in case R has no left total zero divisor. The case of right total
zero divisor may be discussed in a similar way.

I) An element aeR (aO) is called a left total zero divisor is xa=0 for all
ceR. A right totat zero divisor is defined similarly. Further, an element a eR (a4=0)
is called a two-sided total zero divisor or simply a total zero divisor if it is a left and
a right total zero divisor at the same time, i.e. if ax=xa---O for all zeR.

2) A ring without right total zero divisor may have a left total zero divisor. In
fact, if we consider the ring of all matirices of the form- ($ o), where a and b are
elements of a prime field of characteristic p, then this ring has a left total zero divisoz
(o oo), c 4= 0, while it is obvious that it has no right total zero divisor.
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Theorem 3. A compact ring without left (or right) total zero
divisor is a limit ringD of finite rings. (Conjecture of S. Kakutani)

Proof. By Theorem 2 R(=G) is a totally disconnected compact
abelian group with respect to addition. Hence, in an arbitrary neigh-
borhood U of zero, we may choose an open suboup V of G. By
the previous lemma, we can find a neighborhood V1 of zero such that
RVI V. Similarly there exists a neighborhood V. of zero such that
V.R V. Let now W be an open subgroup of G satisfying W V
V V2. Then it is easy to see that the two-sided ideal I= W-t-

RW-t-WR/RWR generated by W is contained in U. Thus, for any
neighborhood U of zero, there exists an open two-sided ideal I contained
in U. Theorem 3 follows from this easily if we observe that the factor
ring R[I is a finite ring2).

2. Let R be a locally compact ring, which has no compact nil-
potent ideal. If we consider R as a locally compact abelian group
with respect to addition, we get the following decomposition of R"
R--V-I-B, where V is a vector group of finite dimension, and B is a
closed subgroup of R whose component C of zero is compact. For
any element a eR, the set aC is also a compact connected subgroup
of R. Since the projection of aC on V must also be a compact sub-
grbup of V, it consists only of the zero element of V, i.e. aC must
be contained in B. Further, since C is the component of zero of B,
we must have aC C. Similarly, Ca C. Therefore, C is a compact
connected two-sided ideal in R. If we observe C itself as a compact
connected ring, then Theorem 1 implies that C2=0. Because of our
assumption C must then be the zero ideal, which shows that B is
totally disconnected.

In case R is connected, R must coincide with V. Since V is a
vector group of finite dimension, it is easy to conclude that R is a
hyper-complex number system over the field of real numbers3).

Returning to the general case, for any element a eR, the set aV
is connected. Hence the projection of aV on B must be zero, i.e.
aV V. Similarly, Va V. V is thus a two-sided ideal of R.
Therefore we may consider B as a family of R-operator endomorphisms
of V. In a special case, when all elements of B, considered as an
operator on V, are zero operators, R is clearly a direct product of a
hypercomplex number system V over the field of real numbers, and a
locally compact totally disconnected ideal B. In general, the aggregafe
of all zero endomorphisms of V forms an open subgroup in B. This
follows from the fact that B, being a locally compact totally discon-
nected group, contains a compact open subgroup C. Exactly in the
same way as in above, it may be easily shown that VC-CV=O.

1) A limit ring can be defined exactly in the same way as a limit group. It is

to be noted that the number Gf groups or rings used in the definition of a limit group
or a limit ring is not necessari;y countable. Cf. A. Well, L’int6gration dans les groupes
et leurs applications, Actualit6s, 1939.

2) We owe this proof to T. Nakayama.
3) This result was already obtained by N. Jacobson and O. Taussky, Proc. N.A.S.

USA, 21 (1935), 107, under a more general assumption that R has no total zero divisor.


