2. On Conformal Mapping of an Infinitely Multiply Connected Domain.

By Masatsugu TSUJI. Mathematical Institute, Tokyo Imperial University. (Comm. by T. YOSIE, M.I.A., Jan. 12, 1944.)

1. Let G be a Fuchsian group of linear transformations, which make |z| < 1 invariant and D_0 be its fundamental domain containing z=0 and bounded by orthogonal circles to |z|=1 and D_n be its equivalent and e_n be the set on |z|=1, which belongs to the boundary of D_n . Let z_0 be a point in D_0 and z_n be its equivalent in D_n .

Theorem I. If
$$me_0 > 0$$
, then $\sum_{n=0}^{\infty} me_n = 2\pi$ and $\sum_{n=0}^{\infty} (1 - |z_n|) < 0$.
If $me_0 = 0$, then $\sum_{n=0}^{\infty} me_n = 0$ and $\sum_{n=0}^{\infty} (1 - |z_n|) = \infty$,
 $\sum_{n=0}^{\infty} (1 - |z_n|)^2 < \infty$.

Let D be a domain on the w-plane, bounded by a closed set E, which contains at least three points and $\mathfrak{F}^{(\infty)}$ be the simply connected universal covering Riemann surface of the outside of E. We map $\mathfrak{F}^{(\infty)}$ on |z| < 1 by $w = \varphi(z)$. R. Nevanlinna⁽¹⁾ proved that if cap. E > 0, then E corresponds to a set of measure 2π on |z|=1 and if cap. E=0, then E corresponds to a set of measure zero on |z|=1, when z tends to |z|=1 non-tangentially. $\varphi(z)$ is automorphic with respect to a group G of linear transformations, which make |z| < 1invariant. Let D_0 be its fundamental domain containing z=0 and bounded by orthogonal circles to |z|=1 and D_n be its equivalent and e_n be the set on |z|=1, which belongs to the boundary of D_n . Then from Theorem I, we have easily:

Theorem II (Precised form of R. Nevanlinna's theorem).

If cap.
$$E > 0$$
, then $\sum_{n=0}^{\infty} me_n = 2\pi$
If cap. $E = 0$, then $\sum_{n=0}^{\infty} me_n = 0$

2. Let F be a Riemann surface spread over the *w*-plane and $F^{(\infty)}$ be its covering Riemann surface of planar character and $\mathfrak{F}^{(\infty)}$ be its simply connected universal covering Riemann surface. We map $F^{(\infty)}$ on a schlicht domain D on the *z*-plane. D is the outside of a certain closed set E. We suppose that we can map $\mathfrak{F}^{(\infty)}$ on a unit circle $|\zeta| < 1$ by $w = \varphi(\zeta)$. $\varphi(\zeta)$ is automorphic with respect to a group G of linear transformations, which make $|\zeta| < 1$ invariant. Let D_0 be its fundamental domain containing $\zeta = 0$ and bounded by orthogonal

¹⁾ R. Nevanlinna: Eindeutige analytische Funktionen. Berlin, 1936,

circles to $|\zeta|=1$ and e_0 be the set on $|\zeta|=1$, which belongs to the boundary of D_0 . Then

Theorem III (Fundamental theorem). cap. E > 0, when and only when $me_0 > 0$.

3. Let F be a Riemann surface spread over the w-plane. Green's function $G(w, w_0)$ of F is defined as follows. We approximate F by a sequence of Riemann surfaces : $F_1 < F_2 < \cdots < F_n \to F$, where F_n contains w_0 and is bounded by a finite number of closed curves on F and consists of only inner points of F. Let $G_n(w, w_0)$ be Green's function of F_n with w_0 as its pole. By Harnack's theorem, $\lim_{n\to\infty} G_n(w, w_0)=G(w, w_0)$ uniformly on F, where $G(w, w_0)\equiv\infty$ or is a harmonic function on F, except at w_0 , where it has a logarithmic singularity. If $G(w, w_0)\equiv\infty$, we call it Green's function of F. Let $\mathfrak{F}^{(\infty)}$ be the simply connected universal covering Riemann surface of F. We suppose that we can map $\mathfrak{F}^{(\infty)}$ on $|\zeta| < 1$ by $w = \varphi(\zeta)$. $\varphi(\zeta)$ is automorphic with respect to a group G of linear transformations, which make $|\zeta| < 1$ invariant. Let D_0 be its fundamental domain containing $\zeta=0$ and bounded by orthogonal circles to $|\zeta|=1$ and e_0 be the set on $|\zeta|=1$, which belongs to the boundary of D_0 . Then

Theorem IV. Green's function of F exists, when and only when $me_0 > 0$.

Myrberg¹⁾ proved that if there exists a non-constant positive harmonic function on F, then Green's function of F exists. We can prove: Theorem V. If Green's function of F exists, then there exists a non-constant positive bounded harmonic function on F.

4. Let G(x, y) be an integral function with respect to x and y and y=y(x) be an analytic function defined by G(x, y)=0 and F be its Riemann surface spread over the x-plane. In the former paper²⁾, I have proved that if y(x) is not an algebroid function, then F covers any point infinitely many times, except a set of points of capacity zero and the set of projections of direct transcendental singularities of y(x) on the x-plane is of capacity zero. Let $F^{(\infty)}$ be the covering Riemann surface of F of planar character. We map $F^{(\infty)}$ on a schlicht domain D on the z-plane by x=f(z). D is the outside of a certain closed set E. f(z) is automorphic with respect to a group G of transformations z' = U(z), which transforms the outside of E into itself. Let $\mathfrak{F}^{(\infty)}$ be the simply connected universal covering Riemann surface of F. We suppose that we can map $\mathfrak{F}^{(\infty)}$ on a unit circle $|\zeta| < 1$ by $x = \varphi(\zeta)$. $\varphi(\zeta)$ is automorphic with respect to a group \overline{G} of linear transformations, which make $|\zeta| < 1$ invariant. Let D_0 be its fundamental domain containing $\zeta = 0$ and bounded by orthogonal circles to $|\zeta|=1$ and e_0 be the set on $|\zeta|=1$, which belongs to the boundary of D_0 . If $me_0 > 0$, then we can easily prove that almost all points of e_0 correspond to the boundary points of F. Now the boundary of

1) Myrberg: Über die Existenz der Greenschen Funktionen auf einer gegebenen Riemannschen Fläche. Acta Math. **61**.

2) M. Tsuji: On the domain of existence of an implicit function defined by an integral relation G(x, y)=0. Proc. **19** (1943),

4

No. 1.] On Conformal Mapping of an Infinitely Multiply Connected Domain.

F consists of a point $x = \infty$ and points *x* such that $y(x) = \infty$, so that by Lusin-Priwaloff's theorem¹⁾, $x = \varphi(\zeta) \equiv \infty$ or $y(\varphi(\zeta)) \equiv \infty$, which is impossible. Hence $me_0 = 0$, so that by Theorem III, we have cap. E = 0. From cap. E = 0, we can prove²⁾ that U(z) is a linear function of *z*. Thus we have

Theorem VI. A curve G(x, y)=0 can be uniformized by automorphic functions belonging to a linear group of Schottky type, whose singular set is of capacity zero.

Since $F^{(\infty)}$ is the Riemann surface of the inverse function of x=f(z), which is one-valued and meromorphic outside a closed set E of capacity zero, we have³⁾

Theorem VII (Extension of Gross' theorem). Let y=y(x) be defined by G(x, y)=0 and x_0 be a regular point of y(x). Then y(x) can be continued analytically on half-lines $x=x_0+re^{i\theta}(0 \le r < \infty)$ indefinitely, except for θ -values of measure zero.

5. We have the following

Theorem VIII (Extension of Lusin-Privaloff's theorem). Let E be a closed set of capacity zero on the w-plane and e be a set of positive measure on |z|=1 and w=f(z) be meromorphic in |z|<1. If $\lim f(z)$ exists, when z tends to e non-tangentially to |z|=1 and the limiting values belong to E, then $f(z) \equiv \text{const.}$

From this we have

Theorem IX (Extension of R. Nevanlinna's theorem). Let w=f(z)($\equiv const$) be meromorphic in |z| < 1 and e be a set of positive measure on |z|=1. Then the cluster set of f(z) on e, when z tends to e nontangentially to |z|=1, is of capacity positive.

R. Nevanlinna⁴⁰ proved under the condition, that the characteristic function T(r) of f(z) is bounded in |z| < 1.

From Theorem IX, we can prove:

Theorem X. Let E be a closed set of positive capacity on the wplane and w=f(z) be one-valued and meromorphic in a neighbourhood U of E. Let $z_0 \in U-E$ and E_{ρ} be the sub-set of E, which lies in $|z-z_0| < \rho$ and of positive capacity. Then the cluster set of f(z) on E_{ρ} is of capacity positive.

6. By Theorem III, we can prove:

Theorem XI. Let D be a domain on the w-plane, bounded by enumerably infinite number of continua $K_i(i=1, 2, ...)$ and a closed set E of capacity zero, to which different continua cluster, where E may have common points with K_i . Then D can be mapped conformally on a domain bounded by enumerably infinite number of circles and a closed set of capacity zero.

The problem of conformal mapping of an infinitely multiply

¹⁾ Lusin-Priwaloff. Sur l'unicité et multiplicité des fonctions analytiques. Ann. Sec. norm. sup. 42 (1925).

²⁾ M. Tsuji: Theory of conformal mapping of a multiply connected domain. Jap. Jour. Math. 18 (1942).

³⁾ M. Tsuji: On the behaviour of a meromorphic function in the neighbourhood of a closed set of capacity zero. Proc. 18 (1942).

⁴⁾ R. Nevanlinna. l. c. 1).

connected domain on a domain bounded by circles was proposed by Koebe¹⁾ in the congress at Rome in 1908 as desideratum. From Lichtenstein's article: Neuere Entwicklung der Potentialtheorie. Konforme Abbildung in the Enzyklopädie der mathematischen Wissenschaften, II, we know only special cases are solved till now.

Theorem XII. Let D be a domain on the w-plane, bounded by enumerably infinite number of circles $C_i(i=1, 2, ...)$ and a closed set E of capacity zero, where E may have common points with C_i and C_i may touch each other externally. We invert D into one of C_i and performing the similar operations on all circles and circles newly obtained, we obtain infinitely many circles clustering to a closed set M. Then M is of capacity zero.

From this we can prove:

Theorem XIII. Let D be a domain on the z-plane of the nature mentioned in Theorem XII and Δ be a domain on the w-plane of the same nature. If we can map D conformally on Δ by w=f(z), then f(z) is a linear function of z.

The full detail of the proof will apear in Japanese Journal of Mathematics, **19** (1944).

1) Koebe: Über ein allgemeines Uniformisierungsprinzip. Atti del congresso intern. dei. Mat. Roma, 2 (1909).