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1. Introduction. Let (/2, P) be any probability field, and g(t, ),
0 ___< t 1, (oe/2, be any brownian motion1) on (/2, P) i.e. a (real)
stochastic differential process with no moving discontinuity such that
(g(s,,o)-g(t,,o))=O) and (g(s,,,,)-g(t,,o))=ls-tl. In this "note

we shall investigate an integral _/.f(r, ) dg(r, o) for any element

f(t, ) in a functional class S* which will be defined in 2; the
particular case in which f(t, o) does not depend upon has already
been treated by Paley and Wiener).

In 2 we shall give the definition and prove fundamental
properties concerning this integral. In 3 we shall establish three
theorems which give sufficient conditions for integrability. In 4 we
give an example, which will show a somewhat singular property of
our integral.

2. Definition and Properties. For brevity we define the classes
of measurable functions defined on [0, 1] /2" G, S(t0, tl, ..., t), S and
S* respectively as the classes of f(t, ,o) satisfying the corresponding
conditions, as follows,

G" f(r, (), g(r, o), 0 r , are independent of g(a, o)-g(t, ),
t a 1, for any t, g(r, o) being the above mentioned brownian
motion,

S(to, t,, ..., t,), 0=t0 <:tt <... <t,=t :f(t, ,,)eG A L. ([0, 1]xg)
and f(t, )=f($,_,, ), t,_ <__ < , i= 1, 2, ..., n,

S" f(t, ) belongs to S(to, ..., t,) for a system t0, t, ..., t, which
may depend upon f(t, ) in other words S =_ d S(to, t,, ..., t,),

S* f($, ) e G and for any there exists h(, ) e S such that

P{o ;f(t, o)=h(t, o) for any t} > 1-.

At first for f(t, )eS we define the stochastic integral (r, ,o)

,o) (for brevity denote it by I(t, ;f)) as follows"d,g(r,

The cost of this research has been defrayed from the Scientific Expenditure of
the Department of Education.

1) C.P. Lvy" Thorie de l’addition des variable alatoire, P. 167, 1937, and also
J. L. Doob" Stochastic processes depending on a continuous parameter, Trans., &mer.
Math. Soc. vol. 42, Theorem 3.9.

2) , denotes the mathematical expectation, viz. ’f()=I#
f o)P(d).

3) R.E.A.G. Paley and N. Wiener, Fourier transforms in the complex domain,
Amer. Math. Soc. Coll. Publ. (1934), Chap. IX.

4) means the closure of S with respect to the norm in L.([0,1] #).



[20 K. ITS). [Vol. 20,

(L)
(N)
(C)
(I)

(B)
and

k
(2.1) i(t, o f):,f(t-l, o) (g(t, o)-g(t{_l, ,o))

i-’1

+ f(ta, w)(g(t,
for t t t+, if f(t, ) e S(to, tl, ..., t,) this definition is indepen-
dent of the special choice of S(to, t, ..., t,). We have the
Tem 2.1.

I(t, af+ bg)=aI(t, o ;f)+ bI(t, (o g)
I(t, ,o ;1)=g(t, ,o)-g(O,(o),
I(t. o ;f) is a continuous function of t with P-measure 1,

III(t, ,o ;f)ll)=llf(r, ,o) IIo, tn for any t, 0 t 1,

p{,o sup I(t,
0tgl

if f(t, ,o)= h(t, ,o), 0 <= t <= 1 for any ,o e 121, 121 being
any P-measurable subset of 9, then I(t, ,o ;f)= I(t, o h),
0 <___ t 1, almost everywhere in 21.

Proof. (L), (N), (C) and (J) are evident by the definition. In
order to show (I) we may assume t=t with no loss of generality.
The left side of (I) is the expectation of I(t, o,f)2, say I(t, o;fy.

k

(2.2) I(t, o 1)=gf(t_l, ,o) (g(t, ,)-g(t-i, w))
+2 $f(t_, ,o)f(t]_, ,o)(g(t, o,)-g(t_,

In order to calculate this right side we shall achieve preliminary
calculations. For brevity write ft and gt for f(t, co) and g(t, o) res-
pectively. Since f(t, ) e G r L([0, lJ 9), we have, for t s < u <: v,

Iff.(g.--’g,)l< /fft(g--g)-v/$fft(g--g,) <.

Therefore we obtain

t I(t, m f): .tf(t,-, o) (t,- t,_,)= (t, ,o1 P(do)d,

i.e. 111(t, o; f)I1 =Ill(t, o)II0.
For the proof of (B) we state the

Lemma 2.1. Let y(m), x(), i=1, 2, n, be any random variables.
We assume, for i= 1, 2, ..., n, that yl(o), xl(o), ..., y_(o), x_l(o), y((o)
are independent of x(o), x/(,o), ..., x,(o). Then we have

(2.3) P{,o max yl(o)xi(eo)+ + yi(o)x(,o)l.> b}
lin

1
b2 (yl(w)xl(,’,,.)+ "t-y,,(,o)x,(,o))

1) I1 means the norm in L.(9).
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This lemma is an extension of Kolmogoroff’s inequality, and its proof
cal be achieved in the same way and so will be omitted.

Let s, i=0, 1, 2, be any sequence dense in [0,1]. Any func-
tion f(t, ,,J)eS(t,, ll, ,) may be considered as an element in
S(t", t’, .+.,+), t", t’’, ..., ’++ being the sequence so, s, ...,
s, t0, h, ...t,, rearranged in the order of magnitude.
We obtain by the above lemma. 2.1

1P{; max [I(t, ,o;f)] b} 8I(1, o;f)=lf(r, )o.9,
Oim+ +1

afortiori

P{o max I(s, ;f)[ b}<llf(r, ,)10
0i

and so, as m--, , we have

P{o sup, I(s,, ,o, f) b} [[f(r, 1]x

hch ple () on cco o (C).

any feS which satisfy (L), (N), (C), (I), (B) and (J). If I(t, o; f),
(t, o ;f) be such extensions, then I(t, ,o f)= I(t, f) for any t with
P-measure 1 for any fe S.

Definition. The function I(t, o;f) determined up to P-meure 0
in the above theorem is called the (stochastic)integral of f with respect

o (t, o) d i deoed b of(r, w)d(r, o).

Poof of Theorem .. Nisteee. I(1, (o; f) is a linear
from S(([, 1] x )) to (9), which is isometric on aeeoun of (.
We can extend I(1, o ;f) and define a linear isomerie oeration from
S o (). he extension, is deermined u to P-measure 0 or eaeh
f(, )eS. We deno it by I(1, ;f). Similarly or any t we ean
define I(t, o ;f) which satisfy (L), (N) and (I).

Let f(t, w) be a sequenee in S sueh that

(2.4) Ilf,.-f I1o.
By (B) we obtain

ot 2 2
By Borel-Contelli’s theorem we have

(2.6) sup II(t, ;f+)-I(t, ;f)<
0t 2

for a sufficiently large humor n with P-measure 1. Therefore
{I(t,f,; )} will be convergent uniformly in t with P-measure 1. De-
note the limit by I(t, ;f).

I(t, ; f), as the lI-limit of the sequence I(t, ;f), is
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also the limit of a subsequence of {I(t, o ;f)}, (in the truth "of the
sequence itself ") with P-measure 1 for any t. Thus we have

(2.7) P{o; I(t,,o;f)=I(t, o;f)}=l.

Now we shall verify the properties (L), (N), (C), (/), (B) and (J)
for this extension I(t, o ;f). (N) is clear. I(t, o f) being continuous
with P-measure I by (C), I(t, o ;f) will also satisfy (C). Since (L)
and (I) hold for I(t, ;f), it is also the case with I(t,:o;f). For
the proof of (B) we make use of the above-cited sequence {f}. We

1have clearly by (B) P{o i<<sup I(t, oo ;f)] => b} _< Ilf II0,. As

n--) oo, we obtain (B), for (I(t, o ;f)} converges to I(t, o;f) uniform-
ly in t with P-measure 1, while {f(t, o)} Ilc0.- converges to
f(t, ).

In order to prove (J) we need only prove that I(t, ;f)=I(t, ; h)
almost everywhere in 2 for each value of t, because I(t, ;f) and
I(t, ; g) are continuous in t with P-measure 1 on account of (C).
Let f(t, ), h(t, ), n=1,2, be sequences in S such that

1 1(2.8) I[f,,-fllo. - h,,- h I1o.
Define k(t, o), by

(2.9)

Then we have

k(t, )=f.(t, ) for o e .(2,

h(t, o) for o e/2- .(21

2(2.10) k-h llo. ;
By (2.8) and (2.10) we obtain

8

I(t, ,o k,,)- I(t, o h)I1 <:.--
By the use of Bienaym’s inequality and Borel-Cantelli’s theorem we
see that {I(t, , f,,)} and {I(t, k)} converge to I(t, , ;f) and to
I(t, ,; h) respectively with P-measure 1. Since (J) holds in S, we
have I(t, ;f)=I(t, , k,,) almost everywhere in t2, and so I(t, , f)
=I(t, ,o;k) almost everywhere in t2.

Uniqueness. Let {f(t, )} be any seqnence in S,
vergent to f(t, ,o) (e S). Let I(t, ,o ;f) and I(t, ,o; f) be two exten-
sions. By (I), I(t, ,o ;f.) and I.(t, ,o f,,) II-converge to I(t, o; f)
and to/.z(t, ,o ;f) respectively. Therefore we have I(t, ,o ;f)--I,.(t, m; f)
with P-measure 1 for any t, and so I,(t, o ;f)=I,(t, o;f) for any t
with P-measure 1 on account of (C).

At last we shall define I(t,,o; f):br f(t, o)eS*. We choose
f(t,o)eS, n=1,2,..., such that P{,o; A(t,,o)=f(t,,o)}:>l-.
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Write for the ,o-set in ( }. We define I(t, ;f) as I(t, ;f) on

-U 2k. Thus we can define I(t, ;f) on the set U 2 of P-measure
k-I

1. This definition is independent of its procedure on account of (J),
and we can easily verify the properties (L), (N), (C), and (J) for this
integral.

3. We shall show important subclasses of S or of S*.
Theorem 3.1. L.([0, 1])__ S1)

The proof is brief and so will be omitted. By this theorem we
see that our integral is an extension of that of Paley and Wiener.

Theorem 32. Any bounded function f(t, ) in G belongs to S.
Proof. Let M denote an upper bound of If(r, )t. We shall de-

fine f(t, o)=0 in the case" t 0. Then it holds that f(v, ), r t and
g(r, ), 0 r t are independent of g(a, o)-g(t, )., t a 1 for
0t 1. Define (t) by (t)=(k-1)2 if (k--1)2-t<k2-.
By (the slight, modification of) Doob’s Lemma2) there exist a number
c and a sequence of integers as such that limf(%(t-c)+c,)=f(t,
almost everywhere in /2. Put f,(t, )=f(i=,,(t-c)+c, ). Since
we have =,(t-c)+c t by the definition, 9(t, ) belors to G, .and
since f,(t, o) M, we have f,(t, ) e L[o.. Therefore we have f(t,
) e S by the definition. Since ,I.f(t, )i M, n= 1, 2, ..., und {f(t, }}
converges to f(t, ) almost everywhere, {f,(t, )} will
converge to f(t, o).

Theorem 33. If any function f(t, )e G is P-measurable in o for
any t and is a function of t continuous except possibly for disconti
nuities of the first kind) with P-measure 1, then f(t, o) belongs to S*.

Proof. It is clear that sup f(t, o) is equal to supf(t,) for t
0<$K1

running over all rational numbers in [0, lJ with P-measure 1. Deaote
it by M(o)). Then M(o) is measurable in o and is finite with P-
measure 1.

For any we determine N such that P{o; M()N} 1-.
Define fN(t, o) as f(t, ) on this -set in ( ) and as 0 otherwise.
Then fly(t, o) is a measurable (in t, ) bounded function e G, and so

we have f(t, )eS. On the other hand we have

P{o;f(t, )=f(t, o)}=P(; M() <:N} ::> 1-e. q.e.d.

4. Example. Let F(x) be a function of x such that F"(x) may
be continuous. By Theorem 3.3 we see F’(g(t, )) e* The author
has proved the equality)"

1) Any function of t can also be considered as a function of (, ). In this sense
L(/) will be considered as a subset of Ls([0, 1Ix 9).

2) J, L. Doob. Loc. cit. p. 512 (1) Lemma 2.1.
3) f(t) is called to have a discontinuity of the first kind at , if f(t+O) and f(t-O)

exist and f(t+O)=f(t)-f(t-O).
4) Cf. K, It5: Markoff ib. Y 7. 244 .
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