107. On Biorthogonal Systems in Banach Spaces.

By Sitiro HANAI.

Nagaoka Technical College.

(Comm. by S. KAKEYA, M.I.A., Oct. 12, 1944.)

1. Let $\{x_i\}$ be a sequence of elements of a Banach space E and $\{f_i\}$ a sequence of elements of its conjugate space \overline{E} , that is, the space of all bounded linear functionals f(x) defined on E, with norm ||f|| = 1. u. b. |f(x)|.

The system $\{x_i; f_i\}$ (i=1, 2, ...) is called to be biorthogonal if

$$f_i(x_j) = \begin{cases} 1 & \text{for } i = j, \\ 0 & \text{for } i \neq j. \end{cases}$$

We denote by X_k the closed linear subspace of E which consists of all linear combinations of terms of the subsequence of $\{x_i\}$ obtained by taking away only one term x_k from $\{x_i\}$ and of all limits of the combinations. The sequence $\{x_i\}$ is said to be *minimal* if $x_k \in X_k$ for all k.

S. Kaczmarz and H. Steinhaus¹⁾ have proved the following theorem :

Let $\{x_i\}$ be a sequence of elements of the space $L^{(p)}(p \ge 1)$. The necessary and sufficient condition that there exists a sequence $\{f_i\}$ of bounded linear functionals defined on $L^{(p)}$ such that the system $\{x_i; f_i\}$ is biorthogonal is that the sequence $\{x_i\}$ is minimal.

The object of the present paper is to show that the above theorem is valid in the Banach space E and to get the conditions for the existence of $\{x_i\}$ of elements of E such that for a given sequence $\{f_i\}$ of elements of \overline{E} the system $\{x_i; f_i\}$ is biorthogonal and finally to apply the obtained results to a trigonometrical system.

2. Theorem 1. Let $\{x_i\}$ be a sequence of elements of E. The necessary and sufficient condition that there exists a sequence $\{f_i\}$ of elements of \overline{E} such that $\{x_i, f_i\}$ is biorthogonal is that $\{x_i\}$ is minimal.

Proof. Necessity. Suppose that there exists $\{f_i\}$ such that $\{x_i; f_i\}$ is biorthogonal and $x_1 \in X_1$. Then there are sequences of numbers $\{\gamma_k^{(n)}\}$ (n=1, 2, ...) such that $Z_n = \sum_{k=2}^{m_n} \gamma_k^{(n)} x_k$ and $\lim_{n \to \infty} Z_n = x_1$.

Therefore

$$\lim_{n \to \infty} f_1(Z_n) = f_1(x_1) = 1.$$

On the other hand $f_1(Z_n)=0$ for n=1, 2, ..., thus we have arrived at a contradiction.

Sufficiency. If $\{x_i\}$ is minimal, then $x_1 \in X_1$. Since X_1 is a closed linear subspace of E, there exists an $f_1 \in \overline{E}$ such that

¹⁾ S. Kaczmarz and H. Steinhaus: Theorie der Orthogonalreihen, Warszawa, 1935, p. 264.

On Biorthogonal Systems in Banach Spaces.

$$f_1(x_1) = 1$$
, $f_1(x) = 0$ for all $x \in X_1^{(2)}$.

In the same manner, we have $f_i \in \overline{E}$ such that

$$f_i(x_i) = 1$$
, $f_i(x) = 0$ for all $x \in X_i$

Thus the proof is completed.

Theorem 2. Let $\{f_i\}$ be a sequence of elements of the space \overline{E} . The necessary and sufficient condition that there exists a sequence $\{x_i\}$ of elements of E such that $\{x_i; f_i\}$ is biorthogonal is that $\{f_i\}$ is minimal.

Proof. Necessity. Suppose that $\{f_i\}$ is not minimal. Let F_k denote the closed linear subspace of \overline{E} obtained from the subsequence of $\{f_i\}$ by taking away only one term f_k from $\{f_i\}$. Without loss of generality we may assume that $f_1 \in F_1$. Then, there are sequences

 $\{\gamma_k^{(n)}\}\ (n=1, 2, ...)$ such that $f^{(n)} = \sum_{k=2}^{m_n} \gamma_k^{(n)} f_k$ and $\lim_{n \to \infty} ||f_1 - f^{(n)}|| = 0$. On the other hand we have

$$f_1(x_1) = 1$$
, and $f^{(n)}(x_1) = \sum_{k=2}^{m_n} \gamma_k^{(n)} f_k(x_1) = 0$.

Since $\lim_{n\to\infty} ||f_1 - f^{(n)}|| = 0$, we get $f_1(x_1) = 0$, which contradicts to $f_1(x_1) = 1$.

Sufficiency. Since $\{f_i\}$ is minimal and the space \overline{E} is a Banach space, by Theorem 1 there exists a $g_1 \in \overline{\overline{E}}$ such that

$$g_1(f_i) = \begin{cases} 1 & \text{for } i=1, \\ 0 & \text{for } i \neq 1, \end{cases}$$

where $\overline{\overline{E}}$ denotes the conjugate space of \overline{E} .

By S. Kakutani's theorem³⁾ for every $f_1, f_2, ..., f_n$ where *n* denotes an arbitrary integer there exists at least one element $x_1^{(n)} \in E$ such that

$$f_i(x_1^{(n)}) = g_1(f_i)$$
 for $i = 1, 2, ..., n$.

Let $E_1^{(n)}$ denote the set of all such elements $x_1^{(n)}$. Then it is easy to see that the set $E_1^{(n)}$ is a closed non-null set for each n. And we have clearly $E_1^{(1)} \ge E_1^{(2)} \ge \dots$

Since the space E is a complete metric space, by the common part theorem of Cantor, the set $E_1 = \prod_{n=1}^{\infty} E_1^{(n)}$ is a non-null set. Therefore there exists an element $x_1 \in E_1$.

Then $f_1(x_1) = 1$, $f_i(x_1) = 0$ for $i \neq 1$.

In the same way as the above argument, we have x_j such that

$$f_i(x_j) = \begin{cases} 1 & \text{for } i = j, \\ 0 & \text{for } i \neq j. \end{cases}$$

No. 8.]

²⁾ S. Banach: Théorie des opérations linéaires, Warszawa, 1932, p. 57.

³⁾ S. Kakutani: Weak topology and regularity of Banach spaces, Proc. 15 (1939), 169-173.

The theorem is thus proved.

Remark. From the proof of Theorem 1, we see that Theorem 1 remains true in normed linear spaces which are more general than Banach spaces.

3. Now we will apply Theorem 2 to a trigonometrical system.

Let $\{x_i\}$ be a sequence whose terms are as follows: $x_{2k-1} = \frac{\sin kt}{k}$, $x_{2k} = \frac{\cos kt}{k}$ (k=1, 2, ...) defined on the closed interval $[-\pi, \pi]$. Then each x_i is a function of bounded variation. Let $V(x_i)$ denote the total variation of x_i on $[-\pi, \pi]$. Then we have the following theorem.

Theorem 3. For each x_i of the system $\{x_i\}$, there exists an $\varepsilon_i > 0$ such that $V(x_i-x) \ge \varepsilon_i$ for all $x \in X_i$.

Proof. We define a sequence $\{f_i\}$ of bounded linear functionals defined on the space (C) of all real-valued continuous functions on $[-\pi, \pi]$ as follows:

$$f_i(y) = (-1)^{i+1} \frac{1}{\pi} \int_{-\pi}^{\pi} y(t) dx_i \qquad (i \ge 1).$$

Next we define a sequence $\{y_i\}$ of elements of the space (C) as follows: $y_{2k-1} = \cos kt$, $y_{2k} = \sin kt (k \ge 1)$. Then it is evident that $\{y_i; f_i\}$ is a biorthogonal system.

Since the space (C) is a Banach space and the norm $||f_i|| = \frac{1}{\pi} V(x_i)$, by Theorem 2 we have the theorem.