19. Some Metrical Theorems on Fuchsian Groups.

By Masatsugu TSUJI.

Mathematical Institute, Tokyo Imperial University. (Comm. by S. KAKEYA, M.I.A., Feb. 12, 1945.)

1. Let *E* be a measurable set in |z| < 1. We define its hyperbolic measure $\sigma(E)$ by $\sigma(E) = \iint_E \frac{dxdy}{(1-|z|^2)^2}$ (z=x+iy). Let *e* be a linear set on a rectifiable curve *C* in |z| < 1, then its hyperbolic linear measure $\lambda(e)$ is defined by $\lambda(e) = \int_e \frac{|dz|}{1-|z|^2}$.

Let G be a Fuchsian group of linear transformations, which make |z| < 1 invariant and D_0 be its fundamental domain, containing z=0 and z_n be equivalents of $z_0=0$. For any z in |z| < 1, we denote its equivalent in D_0 by (z). Let $E(\theta)$ be the set of points ($re^{i\theta}$) in D_0 , which are equivalent to points on a radius $z=re^{i\theta}(0 \le r < 1)$ of |z|=1. In may formar paper¹, I have proved :

Theorem 1. (i) If $\sum_{n=0}^{\infty} (1-|z_n|) = \infty$, then $E(\theta)$ is everywhere dense in D_0 for almost all $e^{i\theta}$ on |z|=1, (ii) If $\sum_{n=0}^{\infty} (1-|z_n|) < \infty$, then $\lim_{n \to 1} |(re^{i\theta})|=1$ for almost all $e^{i\theta}$ on |z|=1.

In this paper, we will prove the following theorem, which is a precision of Theorem 1 (i).

Theorem 2. Suppose that $\sigma(D_0) < \infty$. Let \wedge be a set in D_0 , which is measurable in Jordan's sense. Let $g: z=te^{i\theta}(0 \leq t < 1)$ be a radius of |z|=1 and l be a segment $(0 \leq t \leq r)$ on g of length r, whose hyperbolic length be L and $L(\wedge)$ be the hyperbolic measure of the set of t-values on (0, r), such that $(te^{i\theta}) \in \wedge$. Then there exists a set e_0 of measure zero on a unit circle U: |z|=1, which does not depend on \wedge , such that if $e^{i\theta} \in U-e_0$, then for any \wedge ,

$$\lim_{L \to \infty} \frac{L(\Lambda)}{L} = \frac{\sigma(\Lambda)}{\sigma(D_0)} . \tag{1}$$

Proof. We consider D_0 as a Riemann manifold F of constant negative curvature with $ds = \frac{|dz|}{1-|z|^2}$ and equivalent points are considered as the same point of F. Let z=x+iy be any point of D_0 . We associate a direction φ at z, which makes an angle φ with the real axis. Then the line elements (z, φ) $(z \in D_0, 0 \leq \varphi \leq 2\pi)$ constitute a phase space Ω , which is a product space of D_0 and a unit circle $U: \Omega = D_0 \times U$ and the volume element $d\mu$ in Ω is defined by $d\mu = \frac{dxdyd\varphi}{(1-|z|^2)^2}$, so that $\mu(\Omega) = 2\pi\sigma(D_0) < \infty$.

¹⁾ M. Tsuji: Theory of conformal mapping of a multiply connected domain, III. Jap. Journ. Math. **19** (1944).

Some Metrical Theorems on Fuchsian Groups.

Now the line element (z, φ) determines a unique geodesic $g=g(z, \varphi)$ of F, which is an arc of an orthogonal circle to |z|=1, which touches the direction φ at z. Let $\gamma_1=e^{i\theta_1}$, $\gamma_2=e^{i\theta_2}$ be the two end points of gon |z|=1, where γ_1 is such that if we proceed on g in the direction φ , then we meet |z|=1 at γ_1 . We call γ_1 the end point of g. Let z_0 be the middle point of the arc $\gamma_1\gamma_2$ on g, z be any point on g and sbe the hyperbolic length of the arc z_0, z , where s is positive, if z lies on z_0, γ_1 and negative, if z lies on z_0, γ_2 . Then we have a one-to-one correspondence between (z, φ) and (γ_1, γ_2, s) . As Hopf proved :¹⁾

$$d\mu = C. \frac{|d\eta_1| |d\eta_2| ds}{|\eta_1 - \eta_2|^2} \quad (C = \text{const.}).$$
 (2)

Now we consider a geodesic flow $T_t(-\infty < t < \infty)$ in \mathcal{Q} :

$$T_t: P = (\eta_1, \eta_2, s) \to P_t(\eta_1, \eta_2, s+t) .$$
 (3)

By (2), T_t is a mass-preserving transformation of \mathcal{Q} into itself. Hopf^D proved that T_t is metric transitive. Hence by Birkhoff's ergodic theorem,

$$\lim_{L\to\infty}\frac{1}{L}\int_0^L f(P_t)dt = \frac{\int_{\mathcal{Q}} f(P)d\mu}{\mu(\mathcal{Q})},\qquad(4)$$

for almost all points $P=(z, \varphi)$ in \mathcal{Q} , where $f < L^2$ in \mathcal{Q} .

Let *M* be any set in D_0 and $S_n(M)$ (n=0, 1, 2, ...) be its equivalents and put $[M] = \sum_{n=0}^{\infty} S_n(M)$. Then $L(\wedge)$ is equal to the hyperbolic measure of the part of *l* contained in $[\wedge]$.

Let *M* be a set in D_0 . We associate at every point *z* of *M* directions φ ($0 \leq \varphi \leq 2\pi$). Then such line elements (z, φ) ($z \in M$, $0 \leq \varphi \leq 2\pi$) constitute a set *E* in \mathcal{Q} , which is a product set of *M* and a unit circle $U: E=M \times U$, so that $\mu(E)=2\pi\sigma(M)$.

Consider a geodesic $g=g(z, \varphi)$ and an arc C=z, z' on g of hyperbolic length L_{g} . Let $L_{g}([M])$ be the hyperbolic measure of the part of C contained in [M]. If we take f(P) in (4) as the characteristic function of E, then (4) becomes

$$\lim_{L_g \to \infty} \frac{L_g([M])}{L_g} = \frac{\mu(E)}{\mu(Q)} = \frac{\sigma(M)}{\sigma(D_0)}, \qquad (5)$$

for almost all points $F = (z, \varphi)$ in Q.

Let Δ be a polygonal domain in |z| < 1, which has common points with D_0 and whose sides consist of segments lying on lines x=const.=aor $y=\text{const.}=\beta$, where a, β are rationals. If Δ contains points outside D_0 , we replace such points by their equivalents in D_0 . We call the so modified domain in D_0 a rational polygonal domain. Since the totality of rational polygonal domains is enumerable, let Δ_i (i=1, 2, ...) be all rational polygonal domains, then by (5),

No. 2.]

¹⁾ E. Hopf: Fuchsian group and ergodic theory. Trans. Amer. Math. Soc. **39** (1936). Ergodentheorie Berlin (1937). M. Tsuji: On Hopf's ergodic theorem. Proc. **20** (1944).

M. Tsuji.

[Vol. 21

$$\lim_{L_g \to \infty} \frac{L_g([\Delta_i])}{L_g} = \frac{\sigma(\Delta_i)}{\sigma(D_0)} , \qquad (6)$$

if $P=(z, \varphi) \in \Omega - N_i$, where $\mu(N_i)=0$.

If D_0 extends to |z|=1, then let $D_0^{(r)}$ be the part of D_0 contained in $|z| \leq r < 1$. Let $0 < \rho_i < 1$ (i=1, 2, ...) be rationals, then by (5),

$$\lim_{L_{g} \to \infty} \frac{L_{g}([D_{0} - D_{0}^{(\rho_{i})}])}{L_{g}} = \frac{\sigma(D_{0} - D_{0}^{(\rho_{i})})}{\sigma(D_{0})}, \qquad (7)$$

if $P \in \mathcal{Q} - N'_i$, where $\mu(N'_i) = 0$.

If we put $N = \sum_{i=1}^{\infty} N_i + \sum_{i=1}^{\infty} N'_i$, then $\mu(N) = 0$ and if $P \in \mathcal{Q} - N$, then (6) and (7) hold for i = 1, 2, ...

By Fubini's theorem, there exists a set M_0 in D_0 , such that $\sigma(M_0)=0$ and for any $z \in D_0 - M_0$, (6) and (7) (i=1, 2, ...) hold for geodesics $g=g(z_0, \varphi)$ for almost all φ . Let $z_0 \in D_0 - M_0$ and e_0 be the set of points on a unit circle U, which are the end points of the exceptional geodesics $g=g(z_0, \varphi)$, then $me_0=0$ and if $e^{i\theta} \in U-e_0$ and and $\eta=e^{i\theta}$ be the end point of a geodesic $g=g(z_0, \varphi)$, then (6) and (7) (i=1, 2, ...) hold for such a geodesic. Let $e^{i\theta} \in U-e_0$ and consider a radius $g_0: z=re^{i\theta}$ $(0 \leq r < 1)$ of |z|=1, which is a geodesic $g_0=g(0, \theta)$ touching $g_0=g(z_0, \varphi)$ at η .

We will prove that (1) holds for such a radius $z=re^{i\theta}$ ($0 \le r < 1$). Let z', z and ζ', ζ be points on g_0 and g respectively, such that $|z'|=|\zeta'|, |z|=|\zeta|, (|z'|<|z)$ and $L_{g_0}(z',z), L_g(\zeta',\zeta)$ be the hyperbolic lengths of the arc z', z on g_0 and ζ', ζ on g, then

$$L_{g_0}(z',z) = \int_{z'}^{z} \frac{dr}{1-r^2}, \qquad L_g(\zeta',\zeta) = \int_{\zeta'}^{\zeta} \frac{|dz|}{1-r^2} \qquad (|z|=r).$$

Since g_0 touches g at η , we have $(1-\epsilon)dr \leq |dz| \leq (1+\epsilon)dr$ for $r_0 \leq r < 1$, so that

$$(1-\varepsilon)L_{g_0}(z',z) \leq L_g(\zeta',\zeta) \leq (1+\varepsilon)L_{g_0}(z',z) \quad (r_0 \leq r < 1).$$
(8)

Let z, ζ be points on g_0 and g respectively, such that $|z| = |\zeta| = r$ and $\sigma(z, \zeta)$ be the hyperbolic distance between z and ζ , then $\sigma(z, \zeta) \leq \frac{\widehat{z, \zeta}}{1-r^2}$, where $\widehat{z, \zeta}$ is the arc length of the arc $\widehat{z, \zeta}$ on |z| = r. Since g_0 touches g at η , we have

$$\sigma(z,\zeta) \to 0 \quad \text{for} \quad r \to 1. \tag{9}$$

(i) First we suppose that \wedge is contained in $|z| \leq r < 1$.

Since \wedge is measurable in Jordan's sense, we can find two polygonal domains Δ_1, Δ'_2 in |z| < 1, such that $\Delta_1 < \wedge < \Delta'_2, \sigma(\Delta'_2) - \sigma(\Delta_1) < \varepsilon$, where Δ_1 consists of only inner points of \wedge and the boundary of Δ'_2 consists of only outer points of \wedge and the sides of Δ_1, Δ'_2 consists of segments on lines x = const. = a or $y = \text{const.} = \beta$, where a, β are rationals. If Δ'_2 contains points outside D_0 , we replace such points by their equivalents in D_0 and let the so modified domain in D_0 be Δ_2 , then we No. 2.]

have two rational polygonal domains Δ_1 , Δ_2 in D_0 , such that $\Delta_1 < \wedge < \Delta_2$, $\sigma(\Delta_2) - \sigma(\Delta_1) < \epsilon$. Then by (6),

$$\lim_{L_g \to \infty} \frac{L_g([\mathcal{A}_i])}{L_g} = \frac{\sigma(\mathcal{A}_i)}{\sigma(D_0)} \qquad (i=1,2).$$
(10)

By (9), there exists $\rho < 1$, such that if a point z $(|z|=r \ge \rho)$ on g_0 lies in $[\wedge]$, then the corresponding ζ $(|\zeta|=|z|)$ on g lies in $[d_2]$ and if ζ lies in $[d_1]$, then z lies in $[\wedge]$, so that by (8),

$$-\operatorname{const.} + \frac{1}{1+\varepsilon} L_g([\mathcal{A}_1]) \leq L_{g_0}([\wedge]) \leq \operatorname{const.} + \frac{1}{1+\varepsilon} L_g([\mathcal{A}_2]), \quad (11)$$

$$-\operatorname{const.} + \frac{1}{1+\varepsilon} L_g \leq L_{g_0} \leq \operatorname{const.} + \frac{1}{1-\varepsilon} L_g, \qquad (12)$$

where L_{g_0} , L_g are hyperbolic lengths of the arc 0, z on g_0 and z_0, ζ on g respectively, where $|z| = |\zeta|$.

Hence by (10), (11), (12),

$$\frac{1-\varepsilon}{1+\varepsilon} \cdot \frac{\sigma(d_1)}{\sigma(D_0)} \leq \lim_{L_{g_0} \to \infty} \frac{L_{g_0}([\wedge])}{L_{g_0}} \leq \frac{\lim}{L_{g_0} \to \infty} \frac{L_{g_0}([\wedge])}{L_{g_0}} \leq \frac{1+\varepsilon}{1-\varepsilon} \cdot \frac{\sigma(d_2)}{\sigma(D_0)}$$

Making $\epsilon \to 0$, $\sigma(A_1) \to \sigma(\wedge)$, $\sigma(A_2) \to \sigma(\wedge)$, we have

$$\lim_{L_{g_0}\to\infty}\frac{L_{g_0}([\wedge])}{L_{g_0}} = \frac{\sigma(\wedge)}{\sigma(D_0)}.$$
 (13)

(ii) Next suppose that \wedge contains points tending to |z|=1.

Let $\wedge^{(r)}$ be the part of \wedge contained in $|z| \leq r < 1$. Then $\wedge^{(r)}$ is measurable in Jordan's sense, hence by (13),

$$\lim_{L_{g_0} \to \infty} \frac{L_{g_0}([\wedge^{(r)}])}{L_g} = \frac{\sigma(\wedge^{(r)})}{\sigma(D_0)} \,. \tag{14}$$

Since $L_{g_0}([\wedge]) \ge L_{g_0}([\wedge^{(r)}])$, we have for $r \to 1$.

$$\lim_{L_{g_0}\to\infty}\frac{L_{g_0}([\wedge])}{L_{g_0}} \ge \lim_{L_{g_0}\to\infty}\frac{L_{g_0}([\wedge^{(r)}])}{L_{g_0}} = \frac{\sigma(\wedge^{(r)})}{\sigma(D_0)} \to \frac{\sigma(\wedge)}{\sigma(D_0)} .$$
(15)

By (9), there exists a rational $0 < \rho < 1$, such that if $z (|z| \ge r_0)$ on g_0 lies in $[D_0 - D_0^{(r)}]$, then the corresponding $\zeta (|\zeta| = |z|)$ on g lies in $[D_0 - D_0^{(\rho)}]$, where $\rho \to 1$ with $r \to 1$. By (7),

$$\lim_{L_g \to \infty} \frac{L_g([D_0 - D_0^{(\rho)}])}{L_g} = \frac{\sigma(D_0 - D_0^{(\rho)})}{\sigma(D_0)} < \delta , \quad \text{if} \quad \rho_0 \leq \rho < 1.$$

Since $[\wedge - \wedge^{(r)}] < [D_0 - D_0^{(r)}]$, we have from (8),

$$\frac{\lim_{L_{g_0}\to\infty} \frac{L_{g_0}([\wedge - \wedge^{(r)}])}{L_{g_0}} \leq \lim_{L_{g_0}\to\infty} \frac{L_{g_0}([D_0 - D_0^{(r)}])}{L_{g_0}}}{\leq \frac{1+\varepsilon}{1-\varepsilon} \cdot \lim_{L_{g}\to\infty} \frac{L_g([D_0 - D_0^{(\rho)}])}{L_g} = \frac{1+\varepsilon}{1-\varepsilon} \frac{\sigma(D_0 - D_0^{(\rho)})}{\sigma(D_0)} < \frac{1+\varepsilon}{1-\varepsilon} \delta.$$

Hence by (14),

$$\begin{split} \overline{\lim_{L_{g_0} \to \infty}} \, \frac{L_{g_0}([\wedge])}{L_{g_0}} & \leq \lim_{L_{g_0} \to \infty} \frac{L_{g_0}([\wedge^{(r)}])}{L_{g_0}} \\ &+ \overline{\lim_{L_{g_0} \to \infty}} \, \frac{L_{g_0}([\wedge - \wedge^{(r)}])}{L_{g_0}} < \frac{\sigma(\wedge^{(r)})}{\sigma(D_0)} + \frac{1 + \varepsilon}{1 - \varepsilon} \delta \,. \end{split}$$

Making $r \to 1$, $\delta \to 0$, $\epsilon \to 0$, we have

$$\overline{\lim_{L_{g_0}\to\infty}} \frac{L_{g_0}([\wedge])}{L_{g_0}} \leq \frac{\sigma(\wedge)}{\sigma(D_0)} .$$
(16)

From (15), (16),

$$\lim_{L_{g_0}\to\infty}\frac{L_{g_0}([\wedge])}{L_{g_0}}=\frac{\sigma(\wedge)}{\sigma(D_0)}.$$

Since $L(\wedge) = L_{g_0}([\wedge])$, we have (1), q.e.d.

Remark. The same result holds, if G contains anti-analytic transformations: $z' = \frac{a\bar{z}+b}{c\bar{z}+d}$, where \bar{z} is the conjugate complex of z.

As a special case, consider a domain D_0 in |z| < 1, bounded by *n* circles: C_1, \ldots, C_n , which are orthogonal to |z|=1 and touch each other externally as for a modular figure. Let *G* be the group generated by inversions on C_i $(i=1, 2, \ldots, n)$, then D_0 is its fundamental domain and $\sigma(D_0) < \infty$. The set in D_0 , which is equivalent to a radius $g: z=re^{i\theta}(0 \leq r < 1)$ of |z|=1 is obtained as follows. We start from z=0 and proceed on *g* till we meet the boundary of D_0 , say C_1 , at z_1 , then reflect *g* on C_1 and proceed on the reflected line till we meet the boundary of D_0 and so on. Let $L(\wedge)$ be the hyperbolic measure of the part of such a path contained in \wedge and *L* be the total hyperbolic length of the path, then (1) holds for almost all starting directions for any \wedge .

2. Let $\sigma(D_0) < \infty$ and \mathcal{Q} be defined as before. We consider a product space $\mathcal{Q}^n = \mathcal{Q} \times \cdots \times \mathcal{Q}$, where $\Pi = (P^{(1)}, \ldots, P^{(n)})$ $(P^{(i)} \in \mathcal{Q})$ is considered as a point of \mathcal{Q}^n and consider the product flow $\Pi = (P^{(1)}, \ldots, P^{(n)}) \rightarrow \Pi_t = (P_t^{(1)}, \ldots, P_t^{(n)})$ in \mathcal{Q}^n . Then we can prove easily that the flow is metric transitive. From this we proceed similarly as the proof of Theorem 2 and can prove the following extension of Theorem 2.

Theorem 3. Let G be a Fuchsian group of linear transformations, which make |z| < 1 invariant and D_0 be its fundamental domain, containing z=0 and $\sigma(D_0) < \infty$. Let $\wedge_1, ..., \wedge_n$ be n sets in D_0 , which are measurable in Jordan's sense. Let $g_k: z=te^{i\theta_k}$ $(0 \leq t < 1)$ (k=1,2, ..., n) be n radii of |z|=1 and l_k be segments $(0 \leq t \leq r)$ on g_k of the same length r, whose hyperbolic length be L. Let $L(\wedge_1 \times \cdots \times \wedge_n)$ be the hyperbolic measures of the set of t- values on (0, r), such that $(te^{i\theta_1}) \in \wedge, ..., (te^{i\theta_n}) \in \wedge_n$. Then

108

No. 2.]

$$\lim_{L\to\infty}\frac{L(\wedge_1\times\cdots\times\wedge_n)}{L}=\frac{\sigma(\wedge_1)\cdots\sigma(\wedge_n)}{[\sigma(D_0)]^n},$$

when $(\theta_1, ..., \theta_n)$ does not belong to a certain set e_0 of measure zerv on an n-dimensional torus θ $(0 \leq \theta_k \leq 2\pi, k=1, 2, ..., n)$, where e_0 does not depend on $\wedge_1, ..., \wedge_n$.