19. Some Metrical Theorems on Fuchsian Groups.

By Masatsugu Tsujı.
Mathematical Institute, Tokyo Imperial University.
(Comm. by S. Kakeya, m.I.A., Feb. 12, 1945.)

1. Let E be a measurable set in $|z|<1$. We define its hyperbolic measure $\sigma(E)$ by $\sigma(E)=\iint_{E} \frac{d x d y}{\left(1-|z|^{2}\right)^{2}}(z=x+i y)$. Let e be a linear set on a rectifiable curve C in $|z|<1$, then its hyperbolic linear measure $\lambda(e)$ is defined by $\lambda(e)=\int_{e} \frac{|d z|}{1-|z|^{2}}$.

Let G be a Fuchsian group of linear transformations, which make $|z|<1$ invariant and D_{0} be its fundamental domain, containing $z=0$ and z_{n} be equivalents of $z_{0}=0$. For any z in $|z|<1$, we denote its equivalent in D_{0} by (z). Let $E(\theta)$ be the set of points $\left(r e^{i \theta}\right)$ in D_{0}, which are equivalent to points on a radius $z=r e^{i \theta}(0 \leqq r<1)$ of $|z|=1$. In may formar paper ${ }^{1)}$, I have proved:

Theorem 1. (i) If $\sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)=\infty$, then $E(\theta)$ is everywhere dense in D_{0} for almost all $e^{i \theta}$ on $|z|=1$, (ii) If $\sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)<\infty$, then $\lim _{r \rightarrow 1}\left|\left(r e^{i \theta}\right)\right|=1$ for almost all $e^{i \theta}$ on $|z|=1$.

In this paper, we will prove the following theorem, which is a precision of Theorem 1 (i).

Theorem 2. Suppose that $\sigma\left(D_{0}\right)<\infty$. Let \wedge be a set in D_{0}, which is measurable in Jordan's sense. Let $g: z=t e^{i \theta}(0 \leqq t<1)$ be a radius of $|z|=1$ and l be a segment $(0 \leqq t \leqq r)$ on g of length r, whose hyperbolic length be L and $L(\wedge)$ be the hyperbolic measure of the set of t-values on $(0, r)$, such that $\left(t e^{i \theta}\right) \in \Lambda$. Then there exists a set e_{0} of measure zero on a unit circle $U:|z|=1$, which does not depend on \wedge, such that if $e^{i \theta} \in U-e_{0}$, then for any \wedge,

$$
\begin{equation*}
\lim _{L \rightarrow \infty} \frac{L(\bigwedge)}{L}=\frac{\sigma(\bigwedge)}{\sigma\left(D_{0}\right)} . \tag{1}
\end{equation*}
$$

Proof. We consider D_{0} as a Riemann manifold F of constant negative curvature with $d s=\frac{|d z|}{1-|z|^{2}}$ and equivalent points are considered as the same point of F. Let $z=x+i y$ be any point of D_{0}. We associate a direction φ at z, which makes an angle φ with the real axis. Then the line elements $(z, \varphi)\left(z \in D_{0}, 0 \leqq \varphi \leqq 2 \pi\right)$ constitute a phase space Ω, which is a product space of D_{0} and a unit circle $U: \Omega=D_{0} \times U$ and the volume element $d \mu$ in Ω is defined by $d \mu=\frac{d x d y d \varphi}{\left(1-|z|^{2}\right)^{2}}$, so that $\mu(\Omega)=2 \pi \sigma\left(D_{0}\right)<\infty$.

[^0]Now the line element (z, φ) determines a unique geodesic $g=g(z, \varphi)$ of F, which is an arc of an orthogonal circle to $|z|=1$, which touches the direction φ at z. Let $\eta_{1}=e^{i \theta_{1}}, \eta_{2}=e^{i \theta_{2}}$ be the two end points of g on $|z|=1$, where η_{1} is such that if we proceed on g in the direction φ, then we meet $|z|=1$ at η_{1}. We call η_{1} the end point of g. Let z_{0} be the middle point of the arc $\widetilde{\eta_{1} \eta_{2}}$ on g, z be any point on g and s be the hyperbolic length of the arc z_{0}, z, where s is positive, if z lies on z_{0}, η_{1} and negative, if z lies on z_{0}, η_{2}. Then we have a one-to-one correspondence between (z, φ) and (η_{1}, η_{2}, s). As Hopf proved $:^{1)}$

$$
\begin{equation*}
d \mu=C . \frac{\left|d \eta_{1}\right|\left|d \eta_{2}\right| d s}{\left|\eta_{1}-\eta_{2}\right|^{2}} \quad(C=\text { const. }) . \tag{2}
\end{equation*}
$$

Now we consider a geodesic flow $T_{t}(-\infty<t<\infty)$ in Ω :

$$
\begin{equation*}
T_{t}: P=\left(\eta_{1}, \eta_{2}, s\right) \rightarrow P_{t}\left(\eta_{1}, \eta_{2}, s+t\right) . \tag{3}
\end{equation*}
$$

By (2), T_{t} is a mass-preserving transformation of Ω into itself. Hopf ${ }^{1)}$ proved that T_{t} is metric transitive. Hence by Birkhoff's ergodic theorem,

$$
\begin{equation*}
\lim _{L \rightarrow \infty} \frac{1}{L} \int_{0}^{L} f\left(P_{t}\right) d t=\frac{\int_{\Omega} f(P) d \mu}{\mu(\Omega)}, \tag{4}
\end{equation*}
$$

for almost all points $P=(z, \varphi)$ in Ω, where $f \subset L^{2}$ in Ω.
Let M be any set in D_{0} and $S_{n}(M)(n=0,1,2, \ldots)$ be its equivalents and put $[M]=\sum_{n=0}^{\infty} S_{n}(M)$. Then $L(\wedge)$ is equal to the hyperbolic measure of the part of l contained in [\wedge].

Let M be a set in D_{0}. We associate at every point z of M directions $\varphi(0 \leqq \varphi \leqq 2 \pi)$. Then such line elements $(z, \varphi)(z \in M, 0 \leqq \varphi \leqq 2 \pi)$ constitute a set E in Ω, which is a product set of M and a unit circle $U: E=M \times U$, so that $\mu(E)=2 \pi \sigma(M)$.

Consider a geodesic $g=g(z, \varphi)$ and an arc $C=\widetilde{z, z^{\prime}}$ on g of hyperbolic length L_{g}. Let $L_{g}([M])$ be the hyperbolic measure of the part of C contained in [M]. If we take $f(P)$ in (4) as the characteristic function of E, then (4) becomes

$$
\begin{equation*}
\lim _{L_{g} \rightarrow \infty} \frac{L_{g}([M])}{L_{g}}=\frac{\mu(E)}{\mu(\Omega)}=\frac{\sigma(M)}{\sigma\left(D_{0}\right)} \tag{5}
\end{equation*}
$$

for almost all points $\mu=(z, \varphi)$ in Ω.
Let Δ be a polygonal domain in $|z|<1$, which has common points with D_{0} and whose sides consist of segments lying on lines $x=$ const. $=\alpha$ or $y=$ const. $=\beta$, where α, β are rationals. If Δ contains points outside D_{0}, we replace such points by their equivalents in D_{0}. We call the so modified domain in D_{0} a rational polygonal domain. Since the totality of rational polygonal domains is enumerable, let $\Delta_{i}(i=1,2, \ldots)$ be all rational polygonal domains, then by (5),

[^1]\[

$$
\begin{equation*}
\lim _{L_{g} \rightarrow \infty} \frac{L_{g}\left(\left[\Delta_{i}\right]\right)}{L_{g}}=\frac{\sigma\left(\Delta_{i}\right)}{\sigma\left(D_{0}\right)}, \tag{6}
\end{equation*}
$$

\]

if $P=(z, \varphi) \in \Omega-N_{i}$, where $\mu\left(N_{i}\right)=0$.
If D_{0} extends to $|z|=1$, then let $D_{0}^{(r)}$ be the part of D_{0} contained in $|z| \leq r<1$. Let $0<\rho_{i}<1(i=1,2, \ldots)$ be rationals, then by (5),

$$
\begin{equation*}
\lim _{L_{g} \rightarrow \infty} \frac{L_{g}\left(\left[D_{0}-D_{0}^{\left.\rho_{i}\right)}\right]\right)}{L_{g}}=\frac{\sigma\left(D_{0}-D_{0}^{\left.\rho_{i}\right)^{2}}\right)}{\rho\left(D_{0}\right)} \tag{7}
\end{equation*}
$$

if $P \in \Omega-N_{i}^{\prime}$, where $\mu\left(N_{i}^{\prime}\right)=0$.
If we put $N=\sum_{i=1}^{\infty} N_{i}+\sum_{i=1}^{\infty} N_{i}^{\prime}$, then $\mu(N)=0$ and if $P \in \Omega-N$, then (6) and (7) hold for $i=1,2, \ldots$

By Fubini's theorem, there exists a set M_{0} in D_{0}, such that $\sigma\left(M_{0}\right)=0$ and for any $z \in D_{0}-M_{0}$, (6) and (7) ($i=1,2, \ldots$) hold for geodesics $g=g\left(z_{0}, \varphi\right)$ for almost all φ. Let $z_{0} \in D_{0}-M_{0}$ and e_{0} be the set of points on a unit circle U, which are the end points of the exceptional geodesics $g=g\left(z_{0}, \varphi\right)$, then $m e_{0}=0$ and if $e^{i \theta} \in U-e_{0}$ and and $\eta=e^{i \theta}$ be the end point of a geodesic $g=g\left(z_{0}, \varphi\right)$, then (6) ahd (7) ($i=1,2, \ldots$) hold for such a geodesic. Let $e^{i \theta} \in U-e_{0}$ and consider a radius $g_{0}: z=r e^{i \theta}(0 \leqq r<1)$ of $|z|=1$, which is a geodesic $g_{0}=g(0, \theta)$ touching $g_{0}=g\left(z_{0}, \varphi\right)$ at η.

We will prove that (1) holds for such a radius $z=r e^{i \theta}(0 \leqq r<1)$.
Let z^{\prime}, z and ζ^{\prime}, ζ be points on g_{0} and g respectively, such that $\left|z^{\prime}\right|=\left|\zeta^{\prime}\right|,|z|=|\zeta|,\left(\left|z^{\prime}\right|<\mid z\right)$ and $L_{g_{0}}\left(z^{\prime}, z\right), L_{0}\left(\zeta^{\prime}, \zeta\right)$ be the hyperbolic lengths of the arc z^{\prime}, z on g_{0} and ζ^{\prime}, ζ on g, then

$$
L_{g_{0}}\left(z^{\prime}, z\right)=\int_{z^{\prime}}^{z} \frac{d r}{1-r^{2}}, \quad L_{g}\left(\zeta^{\prime}, \zeta\right)=\int_{\zeta^{\prime}}^{\zeta} \frac{|d z|}{1-r^{2}} \quad(|z|=r) .
$$

Since g_{0} touches g at η, we have $(1-\varepsilon) d r \leqq|d z| \leqq(1+\varepsilon) d r$ for $r_{0} \leqq r<1$, so that

$$
\begin{equation*}
(1-\varepsilon) L_{g_{0}}\left(z^{\prime}, z\right) \leqq L_{g}\left(\zeta^{\prime}, \zeta\right) \leqq(1+\varepsilon) L_{g_{0}}\left(z^{\prime}, z\right) \quad\left(r_{\theta} \leqq r<1\right) \tag{8}
\end{equation*}
$$

Let z, ζ be points on g_{0} and g respectively, such that $|z|=|\zeta|=r$ and $\sigma(z, \zeta)$ be the hyperbolic distance between z and ζ, then $\sigma(z, \zeta) \leqq \frac{\widetilde{z, \zeta}}{1-r^{2}}$, where $\overparen{z, \zeta}$ is the arc length of the arc $\overparen{z, \zeta}$ on $|z|=r$. Since g_{0} touches g at η, we have

$$
\begin{equation*}
\sigma(z, \zeta) \rightarrow 0 \quad \text { for } \quad r \rightarrow 1 \tag{9}
\end{equation*}
$$

(i) First we suppose that \wedge is contained in $|z| \leqq r<1$.

Since Λ is measurable in Jordan's sense, we can find two polygonal domains $\Delta_{1}, \Delta_{2}^{\prime}$ in $|z|<1$, such that $\Delta_{1} \subset \Lambda \subset \Delta_{2}^{\prime}, \sigma\left(\Delta_{2}^{\prime}\right)-\sigma\left(\Delta_{1}\right)<\varepsilon$, where Δ_{1} consists of only inner points of Λ and the boundary of Δ_{2}^{\prime} consists of only outer points of Λ and the sides of $\Delta_{1}, \Delta_{2}^{\prime}$ consists of segments on lines $x=$ const. $=\alpha$ or $y=$ const. $=\beta$, where α, β are rationals. If Δ_{2}^{\prime} contains points outside D_{0}, we replace such points by their equivalents in D_{0} and let the sc modified domain in D_{0} be Δ_{2}, then we
have two rational polygonal domains Δ_{1}, Δ_{2} in D_{0}, such that $\Delta_{1} \subset \wedge \subset \Delta_{2}$, $\sigma\left(\Lambda_{2}\right)-\sigma\left(\Lambda_{1}\right)<\varepsilon$. Then by (6),

$$
\begin{equation*}
\lim _{L_{g} \rightarrow \infty} \frac{L_{g}\left(\left[\Delta_{i}\right]\right)}{L_{g}}=\frac{\sigma\left(\Delta_{i}\right)}{\sigma\left(D_{0}\right)} \quad(i=1,2) . \tag{10}
\end{equation*}
$$

By (9), there exists $\rho<1$, such that if a point $z(|z|=r \geqq \rho)$ on g_{0} lies in [\wedge], then the corresponding $\zeta(|\zeta|=|z|)$ on g lies in $\left[\Delta_{2}\right]$ and if ζ lies in [Δ_{1}], then z lies in [\wedge], so that by (8),

$$
\begin{gather*}
- \text { const. }+\frac{1}{1+\varepsilon} L_{g}\left(\left[\Delta_{1}\right]\right) \leqq L_{g_{0}}([\wedge]) \leqq \text { const. }+\frac{1}{1+\varepsilon} L_{g}\left(\left[\Delta_{2}\right]\right) \tag{11}\\
- \text { const. }+\frac{1}{1+\varepsilon} L_{g} \leqq L_{g_{0}} \leqq \text { const. }+\frac{1}{1-\varepsilon} L_{g} \tag{12}
\end{gather*}
$$

where $L_{g_{0}}, L_{g}$ are hyperbolic lengths of the arc $\overparen{0, z}$ on g_{0} and $\overparen{z_{0}, \zeta}$ on g respectively, where $|z|=|\zeta|$.

Hence by (10), (11), (12),

Making $\varepsilon \rightarrow 0, \sigma\left(\Delta_{1}\right) \rightarrow \sigma(\wedge), \sigma\left(\Delta_{2}\right) \rightarrow \sigma(\wedge)$, we have

$$
\begin{equation*}
\lim _{L_{g_{0} \rightarrow \infty}} \frac{L_{g_{0}}([\Lambda])}{L_{g_{0}}}=\frac{\sigma(\bigwedge)}{\sigma\left(D_{0}\right)} \tag{13}
\end{equation*}
$$

(ii) Next suppose that \wedge contains points tending to $|z|=1$.

Let $\Lambda^{(r)}$ be the part of \wedge contained in $|z| \leqq r<1$. Then $\wedge^{(r)}$ is measurable in Jordan's sense, hence by (13),

$$
\begin{equation*}
\lim _{L_{g_{0} \rightarrow \infty} \rightarrow \infty} \frac{L_{g_{0}}\left(\left[\bigwedge^{(r)}\right]\right)}{L_{g}}=\frac{\sigma\left(\bigwedge^{(r)}\right)}{\sigma\left(D_{0}\right)} \tag{14}
\end{equation*}
$$

Since $L_{g_{0}}([\wedge]) \geqq L_{g_{0}}\left(\left[\bigwedge^{(r)}\right]\right)$, we have for $r \rightarrow 1$.

$$
\begin{equation*}
\lim _{L_{g_{0} \rightarrow \infty} \rightarrow \infty} \frac{L_{g_{0}}([\Lambda])}{L_{g_{0}}} \geqq \lim _{L_{g_{0} \rightarrow \infty}} \frac{L_{g_{0}}\left(\left[\bigwedge^{(r)}\right]\right)}{L_{g_{0}}}=\frac{\sigma\left(\bigwedge^{(r)}\right)}{\sigma\left(D_{0}\right)} \rightarrow \frac{\sigma(\bigwedge)}{\sigma\left(D_{0}\right)} . \tag{15}
\end{equation*}
$$

By (9), there exists a rational $0<\rho<1$, such that if $z\left(|z| \geqq r_{0}\right)$ on g_{0} lies in $\left[D_{0}-D_{0}^{(r)}\right]$, then the corresponding $\zeta(|\zeta|=|z|)$ on g lies in $\left[D_{0}-D_{0}^{(\rho)}\right]$, where $\rho \rightarrow 1$ with $r \rightarrow 1$. By (7),

$$
\lim _{L_{g} \rightarrow \infty} \frac{L_{g}\left(\left[D_{0}-D_{0}^{(\rho)}\right]\right)}{L_{g}}=\frac{\sigma\left(D_{0}-D_{0}^{(\rho)}\right.}{\sigma\left(D_{0}\right)}<\delta, \quad \text { if } \quad \rho_{0} \leqq \rho<1
$$

Since $\left[\wedge-\Lambda^{(r)}\right] \subset\left[D_{0}-D_{0}^{(r)}\right]$, we have from (8),

$$
\begin{aligned}
& \varlimsup_{L_{g_{0}} \rightarrow \infty} \frac{L_{g_{0}}\left(\left[\Lambda-\wedge^{(r)}\right]\right)}{L_{g_{0}}} \leqq \varlimsup_{L_{g_{0} \rightarrow \infty}} \frac{L_{g_{0}}\left(\left[D_{0}-D_{0}^{(r)}\right]\right)}{L_{g_{0}}} \\
& \quad \leqq \frac{1+\varepsilon}{1-\varepsilon} \cdot \lim _{L_{g} \rightarrow \infty} \frac{L_{g}\left(\left[D_{0}-D_{0}^{(\rho)}\right]\right)}{L_{g}}=\frac{1+\varepsilon}{1-\varepsilon} \frac{\sigma\left(D_{0}-D_{0}^{(\rho)}\right)}{\sigma\left(D_{0}\right)}<\frac{1+\varepsilon}{1-\varepsilon} \delta
\end{aligned}
$$

Hence by (14),

$$
\begin{aligned}
& \varlimsup_{L_{g_{0} \rightarrow \infty} \rightarrow} \frac{L_{g_{0}}([\Lambda])}{L_{g_{0}}} \leqq \lim _{L_{g_{0} \rightarrow \infty}} \frac{L_{g_{0}}\left(\left[\Lambda^{(r)}\right]\right)}{L_{g_{0}}} \\
& \quad+\varlimsup_{L_{g_{0} \rightarrow \infty}} \frac{L_{g_{0}}\left(\left[\Lambda-\Lambda^{(r)}\right]\right)}{L_{g_{0}}}<\frac{\sigma\left(\bigwedge^{(r)}\right)}{\sigma\left(D_{0}\right)}+\frac{1+\varepsilon}{1-\varepsilon} \delta
\end{aligned}
$$

Making $r \rightarrow 1, \delta \rightarrow 0, \varepsilon \rightarrow 0$, we have

$$
\begin{equation*}
\varlimsup_{L_{g_{0} \rightarrow \infty} \rightarrow} \frac{I_{g_{0}}([\wedge])}{L_{g_{0}}} \leqq \frac{\sigma(\bigwedge)}{\sigma\left(D_{0}\right)} . \tag{16}
\end{equation*}
$$

From (15), (16),

$$
\lim _{L_{g_{0} \rightarrow \infty}} \frac{L_{g_{0}}([\wedge])}{L_{g_{0}}}=\frac{\sigma(\bigwedge)}{\sigma\left(D_{0}\right)} .
$$

Since $L(\wedge)=L_{g_{0}}([\wedge])$, we have (1), q.e.d.
Remark. The same result holds, if G contains anti-analytic transformations: $z^{\prime}=\frac{a \bar{z}+b}{c \bar{z}+d}$, where \bar{z} is the conjugate complex of z.

As a special case, consider a domain D_{0} in $|z|<1$, bounded by n circles: C_{1}, \ldots, C_{n}, which are orthogonal to $|z|=1$ and touch each other externally as for a modular figure. Let G be the group generated by inversions on $C_{i}(i=1,2, \ldots, n)$, then D_{0} is its fundamental domain and $\sigma\left(D_{0}\right)<\infty$. The set in D_{0}, which is equivalent to a radius $g: z=r e^{i \theta}(0 \leqq r<1)$ of $|z|=1$ is obtained as follows. We start from $z=0$ and proceed on g till we meet the boundary of D_{0}, say C_{1}, at z_{1}, then reflect g on C_{1} and proceed on the reflected line till we meet the boundary of D_{0} and so on. Let $L(\wedge)$ be the hyperbolic measure of the part of such a path contained in \wedge and L be the total hyperbolic length of the path, then (1) holds for almost all starting directions for any \wedge.
2. Let $\sigma\left(D_{0}\right)<\infty$ and Ω be defined as before. We consider a product space $\Omega^{n}=\overbrace{\Omega \times \cdots \times \Omega}^{n}$, where $I=\left(P^{(1)}, \ldots, P^{(n)}\right)\left(P^{(i)} \in \Omega\right)$ is considered as a point of Ω^{n} and consider the product flow $\Pi=\left(P^{(1)}, \ldots\right.$, $\left.P^{(n)}\right) \rightarrow \Pi_{t}=\left(P_{t}^{(1)}, \ldots, P_{t}^{(n)}\right)$ in Ω^{n}. Then we can prove easily that the flow is metric transitive. From this we proceed similarly as the proof of Theorem 2 and can prove the following extension of Theorem 2.

Theorem 3. Let G be:a Fuchsian group of linear transformations, which make $|z|<1$ invariant and D_{0} be its fundamental domain, containing $z=0$ and $\sigma\left(D_{0}\right)<\infty$. Let $\wedge_{1}, \cdots, \wedge_{n}$ be n sets in D_{0}, which are measurable in Jordan's :sense. Let $g_{k}: z=t e^{i \theta_{k}}(0 \leqq t<1) \quad(k=1$, $2, \ldots, n)$ be n radii of $|z|=1$ and l_{k} be segments $(0 \leqq t \leqq r)$ on g_{k} of the same length r, whose hyperbolic length be L. Let $L\left(\bigwedge_{1} \times \cdots \times \bigwedge_{n}\right)$ be the hyperbolic measurs of the set of t - values on $(0, r)$, such that $\left(t e^{i \theta_{1}}\right) \in \wedge, \ldots,\left(t e^{i \theta_{n}}\right) \in \Lambda_{n}$. Then

No. 2.]

$$
\lim _{L \rightarrow \infty} \frac{L\left(\bigwedge_{1} \times \cdots \times \bigwedge_{n}\right)}{L}=\frac{\sigma\left(\bigwedge_{1}\right) \cdots \sigma\left(\bigwedge_{n}\right)}{\left[\sigma\left(D_{0}\right)\right]^{n}}
$$

when $\left(\theta_{1}, \ldots, \theta_{n}\right)$ does not belong to a certain set e_{0} of measure zerv on an n-dimensional torus $\theta\left(0 \leqq \theta_{k} \leqq 2 \pi, k=1,2, \ldots, n\right)$, where e_{0} does not depend on $\wedge_{1}, \ldots, \wedge_{n}$.

[^0]: 1) M. Tsuji : Theory of conformal mapping of a multiply connected domain, III. Jap. Journ. Math. 19 (1944).
[^1]: 1) E. Hopf: Fuchsian group and ergodic theory. Trans. Amer. Math. Soc. 39 (1936). Ergodentheorie Berlin (1937). M. Tsuji : On Hopf's ergodic theorem. Proc. 20 (1944).
