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Abstract

We introduce the concept of Meir-Keeler condensing operator in a Banach
space via an arbitrary measure of weak noncompactness. We prove some
generalizations of Darbo’s fixed point theorem by considering a measure of
weak noncompactness which not necessary has the maximum property. We
prove some coupled fixed point theorems and we apply them in order to
establish the existence of weak solutions for a system of functional integral
equations of Volterra type.

In 1955, Darbo [10] proved a fixed point theorem which combines Schauder
fixed point theorem and Banach contraction principle by considering the con-
cept of measure of noncompactness, as introduced by Kuratowski [15]. Later,
Sadovskii [18] proved a more general fixed point theorem by considering the con-
cept of condensing mapping. On the other hand, in 1977, De Blasi [11] introduced
the concept of measure of weak noncompactness, and in 1981 G. Emmanuele [12]
stated a fixed point result for condensing mapping with respect to the measure
of weak noncompactness. For more results concerning the weak topology of con-
densing operator which are weakly sequentially continuous, see [7, 8]. Observe
that the different versions of Sadovskii’s fixed point theorem that appeared in the
literature are essentially based on the maximum property of the measure of non-
compactness. Recently, Falset and Latrach [13] proved a Sadovskii’s fixed point
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theorem without using the maximum property, in case the domain of the opera-
tor can, in some sense, be included in a weakly compact set.
In [1, 2, 3, 13] some generalizations of Darbo’s theorem are given when the mea-
sure of noncompactness does not satisfy the maximum property. In particular, in
[2], the authors introduce the notion of Meir-Keeler condensing operator and pro-
vide a few generalizations of Darbo’s fixed point theorem. Also, they introduce
the concept of a bivariate Meir-Keeler condensing operator and proved some cou-
pled fixed point theorems.
In this paper, we introduce the notion of Meir-Keeler condensing operator with
respect to a measure of weak noncompactness and we prove some generalization
of Darbo’s fixed point theorem by considering a measure of weak noncompact-
ness which does not necessarily have the maximum property. Also, we prove
some coupled fixed point theorems for weakly sequentially operators. These
results are then used to investigate the existence of weak solutions to a system
of functional integral equations of Volterra type





x(t) = f (t, x(t), y(t)) +
∫ t

0 g(t, x(s), y(s))ds

y(t) = f (t, y(t), x(t)) +
∫ t

0 g(t, y(s), x(s))ds

where E is a Banach space, T > 0 and f , g : [0, T]×E×E → E are given functions.

1 Preliminaries

Let E be a Banach space endowed with the norm ‖ . ‖ and with the zero element
θ. We denote by B(x, r) the closed ball centered at x with radius r. In particular,

we write Br(θ) = B(θ, r). For a subset C of E, we write C, C
ω

, convC and convC, to
denote the closure, the weak closure, the convex hull and the closed convex hull
of the subset C, respectively. Moreover, we write xn −→ x and xn ⇀ x to denote
the strong convergence (with respect to the norm of E) and the weak convergence
(with respect to the weak topology of E) of a sequence {xn} to x.
Further denote by BE the family of all nonempty and bounded subsets of a Ba-
nach space E, NE the family of all nonempty and relatively weakly compact sub-
sets and let Kω be the family of all weakly compact subsets of E.
In the sequel we need the following definition of a measure of weak noncompact-
ness [8].

Definition 1.1. Let E be a Banach space and X, X1, X2 ∈ BE. A mapping
ω : BE → [0, ∞) is said to be a measure of weak noncompactness if it satisfies the
following conditions:

(1) The family Ker(ω) = {X ∈ BE : ω(X) = 0} is nonempty and Ker(ω) ⊆ NE.

(2) X1 ⊂ X2 implies ω(X1) ≤ ω(X2).

(3) ω(X1) = ω(X1
ω
).

(4) ω(conv(X1)) = ω(X1).
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(5) ω(λX1 + (1 − λ)X2) ≤ λω(X1) + (1 − λ)ω(X2) for λ ∈ [0, 1].

(6) If (Xn)n≥1 is a decreasing sequence of nonempty bounded and weakly closed subsets

of E with lim
n→+∞

ω(Xn) = 0, then
∞⋂

n=1
Xn is nonempty and ω(

∞⋂
n=1

Xn) = 0.

We say that a measure of weak noncompactness is regular if it satisfies additionally
the following conditions :

(7) ω(X1 ∪ X2) = max{ω(X1), ω(X2)} (the maximum property).

(8) ω(X2 + X1) ≤ ω(X1) + ω(X2).

(9) Ker(ω) = NE.

The important example of a measure of weak noncompactness was defined
by De Blasi [11]

β(X) = inf
{

t > 0, there exists Y ∈ Kω such that X ⊂ Y + Bt(θ)
}

,

here X ∈ BE. Notice that the De Blasi measure of weak noncompactness β is
regular [11].

Definition 1.2. Let E be a Banach space. A mapping T : E → E is called
D−set-Lipschitzian, with respect to the measure of weak noncompactness ω, if there
exists a continuous nondecreasing function Θ : IR+ → IR+ with Θ(0) = 0 such that

ω(T(C)) ≤ Θ(ω(C)),

for all C ∈ BE. The function Θ is called D−function of T. If Θ satisfies Θ(r) < r for
r > 0, then T is called a nonlinear D−set-contraction.

Definition 1.3. [7] Let C be a nonempty subset of Banach space E. We say that
T : C → E is condensing with respect to the measure of weak noncompactness ω if
T(X) is bounded, and

ω(T(X)) < ω(X),

for all bounded subset X of C with ω(X) > 0.

Definition 1.4. [7] Let E be a Banach space. An operator T : E → E is said to be weakly
compact if T(C) is relatively weakly compact for every bounded subset C ⊂ E.

Definition 1.5. Let E be a Banach space. An operator T : E → E is said to be weakly
sequentially continuous on E, if for every (xn)n with xn ⇀ x, we have Txn ⇀ Tx.

We recall the weak version of the Schauder-Tikhonov fixed point principle
which was obtained by Arino, Gautier and Penot [4].

Theorem 1.1. Let C be a nonempty, convex and weakly compact subset of a Banach space
E and T : C → C a weakly sequentially continuous operator. Then T has at least one
fixed point in the set C.
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2 Fixed Point Results for Meir-Keeler condensing operators

In 1969, Meir and Keeler [17] introduced the notion of Meir-Keeler contraction
and proved an interesting fixed-point theorem which is a generalization of the
Banach contraction principle. In this section, we introduce the notion of Meir-
Keeler condensing operator via an arbitrary measure of weak noncompactness
on a Banach space E and we present some fixed point results.

Definition 2.1. Let C be a nonempty subset of a Banach space E and ω an arbitrary
measure of weak noncompactness on E. We say that an operator T : C → C is Meir-
Keeler condensing (with respect to ω) if for any ǫ > 0, there exists δ > 0 such that

ǫ ≤ ω(X) < ǫ + δ ⇒ ω(T(X)) < ǫ, (1)

for all X ∈ BC.

Theorem 2.1. Let C be a nonempty, bounded, closed, and convex subset of a Banach
space E and ω be an arbitrary measure of weak noncompactness on E. If T : C → C is a
weakly sequentially continuous and Meir-keeler condensing mapping, then T has at least
one fixed point and the set of all fixed points of T in C is weakly compact.

Proof. Define the sequence (Cn) of subsets of C by

C0 = C and Cn = conv(TCn−1)
ω

, n ≥ 1.

If there exists an integer N ≥ 0 such that ω(CN) = 0, then CN is relatively weakly
compact. Thus, it suffices to apply Theorem 2.1.
Assume that ω(Cn) 6= 0 for n ≥ 0. Define ǫn = ω(Cn) and let δn = δ(ǫn) > 0 be
chosen according to (1). By the definition of ǫn, we have

ǫn+1 = ω(Cn+1) = ω(conv(TCn)) = ω(TCn) < ω(Cn) = ǫn.

Since (ǫn)n≥0 is a positive decreasing sequence of real numbers, there exists r ≥ 0
such that ǫn → r as n → ∞. We show that r = 0.
Suppose the contrary, then there exists N0 such that

n > N0 =⇒ r ≤ ǫn < r + δ(r),

then, by the definition of Meir-Keeler condensing operator, we get ǫn+1 < r. This
is absurd, so r = 0. Hence (Cn) is a decreasing sequence of nonempty, bounded
and weakly closed subsets. Consequently, by condition (6), we deduce that the

set C∞ =
∞⋂

n=1
Cn is nonempty, weakly closed convex and C∞ ∈ kerω. It is clear

that T(C∞) ⊂ C∞ and, so, T : C∞ → C∞ is well defined. Thus, applying Theorem
2.1, T has at least one fixed point.
We put

FT = {x ∈ C : T(x) = x} and ǫ0 = ω(FT).

If ǫ0 6= 0, then by (1), we have

ω(FT) = ω(T(FT)) < ǫ0 = ω(FT),

which is absurd, then ω(FT) = 0. On the other hand, it is clear that FT is weakly
closed, so FT is weakly compact.
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If we consider in Theorem 3.1 the measure of weak noncompactness diam(.),
we obtain the following result which is a partial answer to Question 2.8 in [21].

Theorem 2.2. Let C be a nonempty, closed and bounded subset of a Banach space E.
If T : C −→ C satisfying : For any ǫ > 0, there exists δ > 0 such that

ǫ ≤ diam(X) < ǫ + δ ⇒ diam(T(X)) < ǫ,

then T has a unique fixed point.

Proof. As in the proof of Theorem 3.1, we prove the existence of a non-empty
T−invariant closed convex subset C∞ with diam(C∞) = 0, which means that C∞

is a singleton and therefore T has a fixed point. For the uniqueness, we assume
that there exists two different fixed points x0, x1 ∈ C and we put X = {x0, x1}. We
have diam(X) = diam(T(X)) =‖ x0 − x1 ‖, which is absurd, so T has a unique
fixed point.

Lim [16] and Suzuki [19] introduced the notion of L−functions and character-
ized Meir-Keeler contractions in metric spaces by L−functions. In the same way,
Aghajani [2] characterized Meir-Keeler condensing operators by L-functions.

Definition 2.2. ([16]) A function ϕ from R+ into itself is called L−function (resp.
strictly L − f unction) if ϕ(0) = 0, ϕ(s) > 0, for s ∈ (0,+∞), and for every
s ∈ (0,+∞) there exists δ > 0 such that ϕ(t) ≤ s ( resp. ϕ(t) < s), for any
t ∈ [s, s + δ].

Example 2.1. Consider a right continuous function ϕ : IR+ −→ IR+ such that ϕ(0) = 0
and ϕ(r) < r, for all r > 0. It is clear that ϕ is a strictly L−function. In particular, we
consider ϕ(t) = kt for k ∈ (0, 1).

Similar to Proposition 1 in [16] and Theorem 2.6 in [2], we can prove the
following characterization of Meir-Keeler condensing operators with respect to
a measure of weak noncompactness.

Proposition 2.1. Let C be a nonempty and bounded subset of a Banach space E, ω an
arbitrary measure of weak noncompactness and T : C → C a mapping. Then T is a
Meir-Keeler condensing operator if and only if there exists an L−function ϕ such that

ω(T(X)) < ϕ(ω(X)),

for all X ∈ BE with ω(X) 6= 0.

As a consequence of Theorem 3.1 and Proposition 3.1, we obtain the following
fixed point result.

Corollary 2.1. Let C be a nonempty, bounded, closed and convex subset of a Banach
space E, ω an arbitrary measure of weak noncompactness and T : C → C a mapping.
We suppose that T is weakly sequentially continuous such that

ω(T(X)) < ϕ(ω(X)),

for X ⊆ C, where ϕ is an L−function. Then, T has at least one fixed point and the set of
all fixed points of T in C is weakly compact.
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Theorem 2.3. Let C be a nonempty, bounded, closed, and convex subset of a Banach
space E and ω an arbitrary measure of weak noncompactness. Let T : C → C be a
weakly sequentially continuous operator such that

ω(T(X)) ≤ ϕ(ω(X)),

for X ⊆ C, where ϕ is a strictly L−function. Then, T has at least one fixed point and the
set of all fixed points of T in C is weakly compact.

Proof. It is enough to show that T is a Meir-Keeler condensing operator. Let
ǫ > 0 and δ > 0 such that

ϕ(t) < ǫ, i f ǫ ≤ t ≤ ǫ + δ.

Let X be a subset of E such that

ǫ ≤ ω(X) ≤ ǫ + δ.

Thus,
ω(T(X)) ≤ ϕ(ω(X)) < ǫ.

The proof is concluded by Theorem 3.1.

Corollary 2.2. Let C be a nonempty, bounded, closed, and convex subset of a Banach
space E, ω is an arbitrary measure of weak noncompactness on E and T : C → C be
a mapping. If T is weakly sequentially continuous and a nonlinear D−set contraction,
then T has at least one fixed point.

In particular, we obtain the following weak version of Darbo’s fixed point
theorem.

Corollary 2.3. [5] Let C be a nonempty, bounded, closed, and convex subset of a Banach
space E, ω is an arbitrary measure of weak noncompactness on E and let T : C → C be a
weakly sequentially continuous operator such that

ω(T(X)) ≤ k(ω(X)),

for X ⊆ C, where k ∈ [0, 1[. Then, T has at least one fixed point.

In the following, we state a Krasnoselskii’s fixed point result.

Theorem 2.4. Let C be a nonempty closed, convex and bounded subset of a Banach space
E and ω be a complete and subadditive measure of noncompactness. Let F, G : C −→ E
are two weakly sequentially continuous mappings such that

i) F is Meir-Keeler condensing,
ii) G is weakly compact,
iii) for all x ∈ X, F(x) + G(x) ∈ C .

Then there exists at least x ∈ C such that F(x) + G(x) = x.

Proof. It is clear that the mapping F + G : C −→ C is well defined and that
it is weakly sequentially continuous. Since ω is complete, subadditive and G is
weakly compact, we have

ω((F + G)(X)) ≤ ω(F(X) + (G(X)) ≤ ω(F(X)) + ω(G(X)) < φ(X),

for all X ∈ Pbd(E), where φ is the L−function associated to F. By Corollary 3.1,
there is at least x ∈ C such that F(x) + G(x) = x.
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The following Theorem can be considered as a result in the metric fixed point
theory.

Theorem 2.5. Let C be a nonempty, bounded, closed, and convex subset of a Banach
space E. Let F : E → E and G : C −→ E are weakly sequentially continuous operators
such that

i) ‖Fx − Fy‖ ≤ Θ(‖x − y‖), where Θ is a (nondecreasing and right continuous)
strictly L− function,
ii) G is a weakly compact,
iii) T(x) = F(x) + G(x) ∈ C, for all x ∈ C.

Then, T has at least one fixed point and the set of all fixed points of T in C is weakly
compact.

Proof. Let ω be the De Blasi measure of weak noncompactness and X a non-
empty subset of C such that ω(X) = d > 0. Let ǫ > 0, then there exists a weakly
compact K of E such that X ⊆ K + Bd+ǫ(θ). For any x ∈ X there exists y ∈ K and
z ∈ Bd+ǫ(θ) such that x = y + z. On the other hand, we have

‖Fx − Fy‖ ≤ Θ(‖x − y‖) ≤ Θ(d + ǫ).

It follows that

F(X) ⊆ F(K) + BΘ(d+ǫ)(θ) ⊆ F(K)
ω
+ BΘ(d+ǫ)(θ).

Since F is weakly sequentially continuous and K is weakly compact, F(K)
ω

is
weakly compact and we get

ω(F(X)) ≤ Θ(d + ǫ).

Since θ is right continuous and letting ǫ tends to 0, we obtain

ω(F(X)) ≤ Θ(d) = Θ(ω(X)).

Now, since G is weakly compact, we get

ω(T(X)) ≤ ω(F(X)) + ω(G(X)) ≤ Θ(ω(X)).

Consequently, applying corollary 3.2, we deduce the result.

Definition 2.3. ([21]) A mapping T on a complete metric space (E, d) is said to be
diametrically contractive if

δ(T(A)) < δ(A) for all closed subsets A such that 0 < δ(A) < ∞.

(Here δ(A) := sup{d(x, y) : x, y ∈ A} is the diameter of A).

Theorem 2.6. ([21]) Let C be a weakly compact subset of a Banach space E and let
T : C → C be a diametrically contractive mapping. Then T has a fixed point.
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Theorem 2.7. Let C be a nonempty, bounded and closed (not necessary convex) subset
of a Banach space E and ω be an arbitrary measure of weak noncompactness on E. If
T : C → C is a diametrically contractive operator such that

ω(T(X)) ≤ ϕ(ω(X)),

for all bounded set X ⊆ C, where ϕ is nondecreasing strictly L−function. Then T has a
fixed point.

Proof. Consider the sequence (Cn) defined by

C0 = C and Cn = TCn−1
ω

, n ≥ 1.

If there exists an integer N ∈ IN such that ω(CN) = 0, then CN is relatively weakly
compact. So applying Theorem 3.6 we infer that T has a fixed point. Assume that
ω(Cn) 6= 0 for n ≥ 0. By assumption we have

ω(Cn+1) = ω(T(Cn)) ≤ ϕ(ω(Cn)) ≤ · · · ≤ ϕn(ω(C)).

Since ϕ is strictly L−function and nondecreasing, then lim
n→∞

ϕn(t) = 0 :

ω(Cn) → 0 as n → +∞.

So, (Cn) is a decreasing sequence of nonempty, bounded and weakly closed sub-

sets. Consequently, we deduce that the set C∞ =
∞⋂

n=1
Cn is nonempty and weakly

compact. Define the maps T : C∞ → C∞. Thus, applying Theorem 3.6, T has a
fixed point.

Next, we introduce the notion of F−contraction operator.

Definition 2.4. ([13]) Let F be the family of all functions Θ : IR+ → IR satisfying the
following three conditions :

(Θ1) Θ is strictly increasing;

(Θ2) for each sequence (tn)n∈IN of positive numbers, lim
n→∞

tn = 0 if and only if

lim
n→∞

Θ(tn) = −∞;

(Θ3) Θ is continuous.

A mapping T : E → E is said to be an F−contraction if there exist τ > 0 and Θ ∈ F
such that, for all x, y ∈ E,

d(T(x), T(y)) > 0 ⇒ τ + Θ(d(T(x), T(y))) ≤ Θ(d(x, y)).

For example we consider the following functions. Θ(t) = ln(t),
Θ(t) = ln(t) + t, Θ(t) = −1√

t
and Θ(t) = ln(t2 + t).



Some fixed point theorems for Meir-Keeler condensing operators 231

Theorem 2.8. Let (E, ‖ · ‖) be a Banach space and let C be a nonempty closed, convex
and bounded subset of E. Let F : E −→ E and G : C −→ E be two weakly sequentially
continuous mappings such that

i) F is an F−contraction,
ii) G is weakly compact,
iii) for all x ∈ C, F(x) + G(x) ∈ C.

Then there exists at least x ∈ C such that F(x) + G(x) = x.

Proof. Since F is an F−contraction, there exits Θ ∈ F and τ > 0 such that

‖Fx − Fy‖ > 0 ⇒ Θ(‖Fx − Fy‖) ≤ Θ(‖x − y‖)− τ.

Since Θ is continuous and satisfies (Θ2), we have Θ(IR+) =] − ∞, α[, where
α ∈ IR ∪ {∞}. On the other hand, Θ satisfies (Θ1) then Θ is injective and we
deduce that Θ : IR+ →]− ∞, α[ is invertible.
Next, we define f : IR+ → IR+ by

f (t) = Θ−1(Θ(t) − τ), for t > 0 and f (0) = 0.

By condition (Θ2) we have lim
n→∞

f (tn) = 0 for each sequence (tn) converges to 0.

Hence f is well defined and continuous. So

‖Fx − Fy‖ ≤ Θ−1(Θ(‖x − y‖)− τ) = f (‖x − y‖).
Now, since Θ is strictly increasing, it is clear that f (t) < t for all t > 0. By
Theorem 3.5, the proof is concluded.

3 Coupled Fixed Point Results for Bivariate Meir-Keeler con-

densing Operators

In this section we introduce the notion of bivariate Meir-Keeler condensing
operator via an arbitrary measure of weak noncompactness and we prove some
coupled fixed point results.

Definition 3.1. ([9]) An element (x, y) ∈ X × X is called a coupled fixed point of the
operator T : X × X → X if T(x, y) = x and T(y, x) = y.

We present the weak version of Theorem 3.2 in [6].

Theorem 3.1. Suppose that ω1, ω2, · · · , ωn are measures of weak noncompactness
on Banach spaces E1, E2, · · · , En, respectively. Moreover, assume that the function
F : IRn

+ → IR+ is convex and F(x1, · · · , xn) = 0 if and only if xi = 0 for
i = 1, 2, · · · , n. Then,

ω(X) = F(ω1(X1), ω2(X2), · · · , ωn(Xn))

defines a measure of weak noncompactness on E1 × E2 × · · · × En, where Xi denotes the
natural projections of X into Ei for i = 1, 2, · · · , n.

Example 3.1. Let ω be a measure of weak noncompactness on a Banach space E, con-
sidering F1(x, y) = max{x, y} and F2(x, y) = x + y for (x, y) ∈ IR2

+, then con-
ditions of Theorem 4.1 are satisfied. Therefore, ω̃1(X) = max{ω(X1), ω(X2)} and
ω̃2(X) = ω(X1) + ω(X2) define measures of weak noncompactness on the space E × E,
where Xi, i = 1, 2, denote the natural projections of X.
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We define the notion of a bivariate Meir-Keeler condensing operator via mea-
sure of weak noncompactness.

Definition 3.2. Let C be a nonempty subset of a Banach space E, and ω an arbitrary
measure of weak noncompactness on E. We say that an operator T : C × C → C is a
Meir-Keeler condensing operator if for any ǫ > 0, there exists δ > 0 such that

ǫ ≤ max{ω(X1), ω(X2)} < ǫ + δ ⇒ ω(T(X1 × X2)) < ǫ, (2)

for any bounded subsets X1 and X2 of C.

Theorem 3.2. Let C be a nonempty, bounded, closed, and convex subset of a Banach
space E and ω an arbitrary measure of weak noncompactness on E. If T : C × C → C
is a weakly sequentially continuous and Meir-keeler condensing, then T has at least one
coupled fixed point.

Proof. We pose

G : C × C → C × C, G(x, y) = (T(x, y), T(y, x)) .

We recall that (xn, yn) ⇀ (x, y) in the product C × C if and only if xn ⇀ x and
yn ⇀ y. Then, it is clear that the operator G is weakly sequentially continuous.
According to example 4.1, let

ω̃(X) = max{ω(X1), ω(X2)},

for any bounded subset X ⊆ E × E. Let ǫ > 0 and δ(ǫ) > 0. If X is a bounded
subset of C × C such that

ω̃(X) < ǫ + δ(ǫ),

then
max{ω(X1), ω(X2)} < ǫ + δ(ǫ).

Further, we have

ω̃(G(X)) ≤ ω̃(T(X1 × X2)× T(X2 × X1))

= max{ω(T(X1 × X2), ω(T(X2 × X1))}
< ǫ.

Thus, from Theorem 3.1, G has at least one fixed point in C × C. Then, T has at
least one coupled fixed point.

Next, we prove a coupled fixed point theorem using strictly L−functions.

Theorem 3.3. Let C be a nonempty, bounded, closed, and convex subset of a Banach
space E, ω an arbitrary measure of weak noncompactness on E and ϕ is strictly
L−function. Suppose that T : C × C → C is a weakly sequentially continuous
operator satisfying

ω(T(X1 × X2)) ≤
1

2
ϕ(ω(X1) + ω(X2)),

for any subset X1, X2 of C. Then T has at least one coupled fixed point.
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Proof. Similar to the proof of the previous theorem, we define a mapping
G : C × C → C × C as

G(x, y) = (T(x, y), T(y, x))

which is a weakly sequentially continuous map. Moreover,

ω̃(X) = ω(X1) + ω(X2)

defines a measure of weak noncompactness on E × E, where Xi, i = 1, 2, denote
the natural projections of X. Now, let X ⊂ C × C be any nonempty subset. Then,
we obtain

ω̃(G(X)) ≤ ω̃(T(X1 × X2)× T(X2 × X1))

= ω(T(X1 × X2) + ω(T(X2 × X1))

≤ 1

2
ϕ(ω(X1) + ω1(X2)) +

1

2
ϕ(ω(X2) + ω2(X1))

= ϕ(ω̃(X)).

Therefore, G has a coupled fixed point.

Theorem 3.4. Let C be a nonempty, bounded, closed, and convex subset of a Banach
space E and let F, G : E × E → E be weakly sequentially continuous operators. We
assume that

i) ‖F(x, y)− F(u, v)‖ ≤ 1
2Θ(‖x − u‖+ ‖y − v‖), where Θ is a (nondecreasing and

right

continuous) strictly L− function,

ii) G is weakly compact,

iii) F(x, y) + G(x, y) ∈ C, for all (x, y) ∈ C × C.
Then, T has at least one coupled fixed point.

Proof. We pose F̃, G̃ : C × C → C × C defined by

F̃(x, y) = (F(x, y), F(y, x)) and G̃(x, y) = (G(x, y), G(y, x)).

We equipped E × E by the norm ‖ (x, y) ‖=‖ x ‖ + ‖ y ‖.
Let X1 and X2 are nonempty subsets of C, for all (x, y), (u, v) ∈ X1 × X2 we have

‖F̃(x, y)− F̃(u, v)‖ = ‖(F(x, y), F(y, x)) − (F(u, v), F(v, u))‖
= ‖F(x, y) − F(u, v)‖ + ‖F(y, x) − F(v, u)‖

≤ 1

2
Θ(‖x − u‖+ ‖y − v‖) + 1

2
Θ(‖x − u‖+ ‖y − v‖)}

= Θ(‖x − u‖+ ‖y − v‖).

On the other hand, it is clear that G̃ is weakly compact. Then, by Theorem 3.5,

F̃ + G̃ has a fixed point which is a coupled fixed point of F + G.
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4 Application

Let E be a Banach space with the norm ‖ . ‖, E∗ its dual and I = [0, T], T > 0.
In this section, we apply our results to prove the existence of solutions for the
following system of functional integral equations of Volterra type :





x(t) = f (t, x(t), y(t)) +
∫ t

0 g(t, x(s), y(s))ds

y(t) = f (t, y(t), x(t)) +
∫ t

0 g(t, y(s), x(s))ds

(3)

for t ∈ I, where f : I × E × E → E and g : I × E × E → E.
We denote by C(I, E) the Banach space of all continuous functions from I to E
endowed with the sup-norm ‖ . ‖∞ defined by ‖ x ‖∞= sup{‖ x(t) ‖, t ∈ I}, for
each x ∈ C(I, E).
Let (E × E, ‖‖C(I,E)2) be the product space endowed with the norm

‖ (x, y) ‖C(I,E)2=‖ x ‖∞ + ‖ y ‖∞ .

The integral in system (3) is the Pettis integral and the solutions of (3) are
considered in the Banach space X = C(I, E). We consider this system under
the following assumptions :

(H1) The function f is weakly sequentially continuous and there exists a (nonde-
creasing and right continuous) strictly L−function Θ such that

‖ f (t, x, y)− f (t, u, v) ‖≤ 1

2
Θ(‖ x − u ‖ + ‖ y − v ‖), (4)

for all (x, y), (u, v) ∈ E × E and all t ∈ I.

(H2) For each t ∈ I, gt = g(t, ·, ·) is weakly completely continuous (i.e. weakly
sequentially continuous and weakly compact).

(H3) For each continuous x, y : I → E, g(., x(.), y(.)) is Pettis integrable on I.

(H4) For any r > 0, there exists hr ∈ L1(I) with ‖ g(t, x, y) ‖≤ hr(t) for all t ∈ I
and all (x, y) ∈ E × E with ‖ (x, y) ‖≤ r. We let

Mr =
∫ T

0
hr(s)ds.

(H5) There exists r > 0 such that

1

2
Θ(r)+ ‖ f (0, 0) ‖ +Mr ≤ r.
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We need the following results in the sequel.

Theorem 4.1. (I. Dobrokov [11]). Let I be a compact Hausdorff space and E be a Banach
space. Let (xn)n∈IN be a bounded sequence in C(I, E) and x ∈ C(I, E). Then, (xn)n∈IN

is weakly convergent to x if and only if (xn(t))n∈IN is weakly convergent to x(t) for each
t ∈ I.

Theorem 4.2. [14]. Let f : I → E be a mapping satisfying the following conditions :

(1) there exists a sequence of Pettis integrable functions ( fn) weakly convergent to f ,

(2) there exists h ∈ L1(I) such that ‖ fn ‖≤ h, for each n ∈ IN.

Then f is Pettis integrable and
∫ T

0 fn(s)ds converges weakly to
∫ T

0 f (s)ds.

Theorem 4.3. [20]. A subset H in C(I, E) is relatively weakly compact if and only if :

(i) H is weakly equicontinuous on I;

(ii) for each t ∈ I, the subset H(t) = { f (t); f ∈ H} is relatively weakly compact in
E.

Theorem 4.4. Assume that hypotheses (H1)− (H5) hold. Then the integral system (3)
has a solution in C(I, E)× C(I, E).

Proof. For all x, y ∈ C(I, E), we put

F(x, y)(t) = f (t, x(t), y(t)),

G(x, y)(t) =
∫ t

0
g(t, x(s), y(s))ds.

Let S = {x ∈ X; ‖ x ‖≤ r}. Notice that S is closed, convex and bounded subset
of X. We will show that operators F, G satisfy all assumptions of Theorem 4.4.

Step I : We show that F : X × X → X is well defined. Let x, y ∈ X and t, t
′ ∈ I.

We have

‖F(x, y)(t) − F(x, y)(t
′
)‖ = ‖ f (t, x(t), y(t)) − f (t

′
, x(t

′
), y(t

′
))‖

≤ 1

2
Θ(‖x(t) − x(t

′
)‖+ ‖y(t)− y(t

′
)‖),

since Θ is right continuous and Θ(0) = 0, we deduce that F(x, y) ∈ C(I, E).

Step II : We show that G : S × S → X is well defined and weakly sequentially

continuous.. Let t, t
′ ∈ I with t > t

′
. Without loss of generality, assume that
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G(x, y)(t) − G(x, y)(t
′
) 6= 0. By the Hahn-Banach theorem, there exists φ ∈ E∗,

such that ‖ φ ‖= 1 and

‖G(x, y)(t) − G(x, y)(t
′
)‖ = | φ(G(x, y)(t) − G(x, y)(t

′
)) |

= | φ(
∫ t

0
g(s, x(s), y(s))ds −

∫ t
′

0
g(s, x(s), y(s))ds) |

= | φ(
∫ t

t
′ g(s, x(s), y(s))ds) |

= |
∫ t

t
′ φ(g(s, x(s), y(s)))ds |

≤
∫ t

t
′ | φ(g(s, x(s), y(s))) | ds

≤
∫ t

t
′ ‖ g(s, x(s), y(s)) ‖ ds

≤
∫ t

t
′ hr(s)ds.

Since hr ∈ L1(I), then G(x, y) is continuous.

Next we show that G is weakly sequentially continuous. Let (xn, yn) be any
sequence in S × S weakly convergent to (x, y) ∈ S × S, then (xn, yn) is bounded
and by Dobrokov’s Theorem, we get

∀t ∈ I, (xn, yn)(t) ⇀ (x, y)(t).

Fix t ∈ I, since (xn, yn)(s) ⇀ (x, y)(s) for each s ∈ [0, t], then by assumption (H2),
the set {g(s, xn(s), yn(s)), n ∈ IN} is relatively weakly compact for each s ∈ [0, t].

Since the weak topology on E[0,t] coincides with the product of weak topologies,
then from Tychonoff’s theorem, the set

{g(., xn, yn), n ∈ IN} = ∏
s∈[0,t]

{g(s, xn(s), yn(s))), n ∈ IN}

is relatively weakly compact in E[0,t]. Hence, there exists a subsequence, for sim-
plicity we note also the sequence (g(., xn, yn)) such that g(., xn, yn) ⇀ g(., x, y).
By assumption (H4) and Theorem 5.2, we get

∫ t

0
g(s, xn(s), yn(s))ds ⇀

∫ t

0
g(s, x(s), y(s))ds.

Since (G(xn, yn)) is bounded, then we can again apply the Dobrokov’s Theorem
to get

G(xn, yn) ⇀ G(x, y).

So, G is weakly sequentially continuous.
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Step III : We will show that G(S × S) is relatively weakly compact. To do this,
it is enough to prove that G(S × S)(t) is relatively weakly compact and G(S × S)
is weakly equicontinuous. To see this, let (zn) be a sequence in G(S × S) and let
(xn, yn) be a sequence in S × S such that zn(t) = G(xn, yn)(t), where

zn(t) =
∫ t

0
g(s, xn(s), yn(s))ds, for all t ∈ I.

Fix t ∈ I. As in step I I, {g(., xn, yn), n ∈ IN} is relatively weakly compact in

E[0,t]. Hence, there exists a subsequence (g(., xnk
, ynk

)) such that g(., xnk
, ynk

) ⇀

g(., x, y). By assumption (H4) and Theorem 5.2, we deduce that

znk
(t) =

∫ t

0
g(s, xnk

(s), ynk
(s))ds ⇀ z(t) =

∫ t

0
g(s, x(s), y(s))ds.

Hence {zn(t), n ∈ IN} is relatively weakly compact which implies that
G(S × S)(t) is relatively weakly compact.

Next we show that G(S × S) is weakly equicontinuous. Let ǫ > 0;

(x, y) ∈ S × S; φ ∈ E∗ with‖ φ ‖= 1; t, t
′ ∈ I such that t > t

′
and t − t

′ ≤ ǫ,
we have

| φ(G(x, y)(t) − G(x, y)(t
′
)) | = | φ(

∫ t

0
g(s, x(s), y(s))ds −

∫ t
′

0
g(s, x(s), y(s))ds) |

= | φ(
∫ t

t
′ g(s, x(s), y(s))ds) |

= |
∫ t

t
′ φ(g(s, x(s), y(s)))ds |

≤
∫ t

t
′ | φ(g(s, x(s), y(s))) | ds

≤
∫ t

t
′ ‖ (g(s, x(s), y(s))) ‖ ds

≤
∫ t

t
′ hr(s)ds.

Since hr ∈ L1(0, T], it follows that G(S × S) is weakly equicontinuous. By Theo-
rem 5.3, we deduce that G(S × S) is relatively weakly compact.

Step IV : For arbitrary fixed t ∈ I, we have

‖(T(x, y))(t)‖ = ‖F(x, y)(t) + G(x, y)(t)‖

= ‖ f (t, x(t), y(t)) − f (t, 0, 0) + f (t, 0, 0) +
∫ t

0
g(t, s, x(s))ds‖

≤ ‖ f (t, x(t), y(t)) − f (t, 0, 0‖+ ‖ f (t, 0, 0)‖+
∫ T

0
‖g(t, s, x(s))‖ds

≤ 1

2
Θ(‖x(t)‖ + ‖y(t)‖) + ‖F(0, 0)(t)‖ + Mr. (5)
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By assumption (H1), the function Θ is nondecreasing, then we obtain

‖(T(x, y))‖ ≤ 1

2
Θ(‖x‖+ ‖y‖) + ‖F(0, 0)‖+ Mr

≤ 1

2
Θ(‖(x, y)‖ + ‖F(0, 0)‖+ Mr. (6)

Thus, by assumption (H5), we infer that T is a mapping from S × S into S. On
the other hand,

‖F(x, y) − F(u, v)‖ ≤ 1

2
Θ(‖x − u‖+ ‖y − v‖).

Then by Theorem 4.4, T has at least one coupled fixed point.
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