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Abstract

In this paper, we study a Korovkin type approximation theorem for a
sequence of positive linear operators acting from Lp,q (loc) into itself with the
use of Abel method which is a sequence-to-function transformation. Using
the modulus of continuity for Lp,q (loc) we also give the rate of Abel conver-
gence of these operators.

1 Introduction

The classical Korovkin type approximation theory is essentially concerned with
the approximation of real valued functions by means of positive linear opera-
tors ([1]) . It provides conditions for whether a given sequence of positive linear
operators converges strongly to the identity operator in the space of continuous
functions on a compact interval. These theorems exhibit a variety of test functions
which guarantee that convergence property holds on the whole space provided
it holds on them ([1], [9]).

Approximation theory has many connections with theory of polynomial
approximation, functional analysis, numerical solutions of differential and inte-
gral equations, summability theory, measure theory and probability theory.

Some results concerning the Korovkin type approximation in the space Lp[a, b]
of Lebesgue integrable functions on a compact interval may be found in [3], [5], [7].
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If the sequence of positive linear operators does not converge, then it might be
beneficial to use some summability methods. The main aim of using summability
methods has always been to nake a non-convergent sequence to converge. This
was the motivation behind Fejer’s famous theorem showing that Cesàro method
being effective in making the Fourier series of a continuous periodic function to
converge ([13]). The Abel method which is a nonmatrix summability method,
has been used in the Korovkin type approximation of functions in the weighted
space ([12]) . Also Lp approximation via Abel convergence has been studied in
[11].

The purpose of this paper is to use the Abel method, a sequence-to-function
transformation, to study a Korovkin type approximation of a function f by means
of a sequence {Tn ( f ; x)} of positive linear operators acting from the locally inte-
grable function spaces into itself. Section 2 is devoted to preliminaries and basic
definitions concerning Lp,q(loc), the locally integrable function spaces. Section 3
deals with the Korovkin type approximation with the use of Abel convergence
in the space of locally integrable functions. The rate of the Abel convergence is
considered in Section 4.

2 Preliminaries

First of all, we recall some notation and basic definitions used in this paper.
Let q(x) = 1 + x2 ; −∞ < x < ∞ . For h > 0, by Lp,q(loc) we will denote the

space of measurable functions f satisfying the inequality,





1

2h

x+h
∫

x−h

| f (t)|p dt





1/p

≤ M f q (x) , − ∞ < x < ∞ (1.1)

where p ≥ 1 and M f is a positive constant which depends on the function f .
It is known [8] that Lp,q(loc) is a linear normed space with norm,

‖ f‖p,q = sup
−∞<x<∞

(

1
2h

x+h
∫

x−h

| f (t)|p dt

)1/p

q (x)
(1.2)

where ‖ f‖p,q may also depend on h > 0. To simplify the notation, we need the

following. For any real numbers a and b put

∥

∥ f ; Lp (a, b)
∥

∥ :=





1

b − a

b
∫

a

| f (t)|p dt





1/p

,

∥

∥ f ; Lp,q (a, b)
∥

∥ = sup
a<x<b

∥

∥ f ; Lp (x − h, x + h)
∥

∥

q(x)
,

∥

∥ f ; Lp,q (|x| ≥ a)
∥

∥ = sup
|x|≥a

∥

∥ f ; Lp (x − h, x + h)
∥

∥

q(x)
.
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With this notation the norm in Lp,q (loc) may be written in the form

‖ f‖p,q = sup
x∈R

∥

∥ f ; Lp (x − h, x + h)
∥

∥

q(x)
.

We recall that Lk
p,q (loc) is the subspace of all functions f ∈ Lp,q (loc) for which

there exists a constant k f such that

lim
|x|→∞

∥

∥ f − k f q; Lp (x − h, x + h)
∥

∥

q(x)
= 0.

As usual, if T is a positive linear operator from Lp,q (loc) into Lp,q (loc), then the

operator norm ‖T‖ is given by ‖T‖ := sup
f 6=0

‖T f ‖p,q

‖ f ‖p,q
.

The following result is also considered in [8].
Theorem A. Let {Tn} be a sequence of positive linear operators from Lp,q (loc)

into itself and satisfy the conditions
i) The sequence (Tn) is uniformly bounded, that is, there exists a constant C

such that ‖Tn‖ ≤ C for all n,
ii) For fi (y) = yi, i = 0, 1, 2;

lim
n

‖Tn ( fi; x)− fi (x)‖p,q = 0.

Then
lim

n
‖Tn f − f‖p,q = 0

for each function f ∈ Lk
p,q (loc) .

Some analogs of this theorem may be found in [2].

3 Abel Convergence of the Sequence of Positive Linear Opera-

tors

In this section ,using Abel convergence, we show that the Korovkin type approx-
imation theorem does not hold in the whole space Lp,q (loc) but it does hold in

the subspace Lk
p,q (loc) .

Let us recall the Abel convergence.
If the series

∞

∑
k=0

akyk

converges for all y ∈ (0, 1) and

lim
y→1−

(1 − y)
∞

∑
k=0

akyk = L (2.1)

then we say that the sequence a = (ak) is Abel convergent to L (see, e.g, [4], [10]) .
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Since
1

1 − y
=

∞

∑
k=0

akyk, 0 < y < 1, (2.1) is equivalent to the fact that

lim
y→1−

(1 − y)∑
k

(ak − L) yk = 0.

Note that any convergent sequence is Abel convergent to the same value but not
conversely ([4], [10]) .

Let {Tn} be a sequence of positive linear operators from Lp,q (loc) into itself
such that

H := sup
y∈(0,1)

(1 − y)∑
n

‖Tn‖p,q yn
< ∞. (2.2)

Then for all f ∈ Lp,q (loc) and y ∈ (0, 1) the operator Uy defined by

Uy := Uy ( f ; x) := (1 − y)∑
n

Tn ( f ; x) yn

is a positive linear operator from Lp,q (loc) into itself. It is shown [8] that

‖Tn f‖p,q ≤ 4 ‖ f‖p,q .

It follows from (2.1) that

∥

∥Uy

∥

∥

p,q
= sup

‖ f ‖p,q=1

(1 − y)

∥

∥

∥

∥

∥

∑
n

Tn ( f ) yn

∥

∥

∥

∥

∥

p,q

≤ sup
y∈(0,1)

(1 − y)∑
n

‖Tn‖p,q yn

≤ 4 sup
y∈(0,1)

(1 − y)∑
n

yn

= 4.

Now using Abel convergence we give prove that a Korovkin type approximation
theorem does not hold in Lp,q (loc) .

Theorem 1. Let {Tn} be a sequence of positive linear operators from Lp,q (loc)
into itself such that (2.2) holds and satisfies

lim
y→1−

∥

∥Uy ( fi)− fi

∥

∥

p,q
= 0 for i = 0, 1, 2

where fi (t) = ti; i = 0, 1, 2. Then there exists a function f ∗ in Lp,q (loc) for which

lim
y→1−

∥

∥Uy ( f ∗)− f ∗
∥

∥

p,q
6= 0.

Proof. We consider the sequence of operators Tn given in [8] :

Tn ( f ; x) =

{

x2

(x+h)2 f (x + h) , x ∈ [(2n − 1) h, (2n + 1) h)

f (x) , otherwise.

It is shown in [8] that
‖Tn f‖p,q ≤ 4 ‖ f‖p,q .
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Now it is easy to verify that, for each i = 0, 1, 2 we have
∥

∥

∥

∥

∥

(1 − y)∑
n

ynTn fi − fi

∥

∥

∥

∥

∥

p,q

=

∥

∥

∥

∥

∥

(1 − y)∑
n

ynTn fi − (1 − y)∑
n

fiy
n

∥

∥

∥

∥

∥

p,q

=

∥

∥

∥

∥

∥

(1 − y)∑
n

(Tn fi − fi) yn

∥

∥

∥

∥

∥

p,q

≤ (1 − y)∑
n

yn ‖Tn fi − fi‖p,q

→ 0 (y → 1−).

Consider the following function f ∗ given in [8] :

f ∗ (x) =























x2 , i f x ∈
∞
⋃

k=1
[(2k − 1)h, 2kh)

−x2 , i f x ∈
∞
⋃

k=1
[2kh, (2k + 1) h)

0 , i f x < 0.

Then f ∗ ∈ Lp,q (loc) and we get

∥

∥

∥

∥

∥

(1 − y)∑
n

ynTn f ∗ − f ∗

∥

∥

∥

∥

∥

p,q

≥ sup
x∈[(2k−1)h,2(k+1)h]

(

1
2h

x+h
∫

x−h

∣

∣

∣

∣

(1 − y)∑
n

ynTn f ∗ − f ∗
∣

∣

∣

∣

p

dt

)
1
p

q(x)

= sup
x∈[(2k−1)h,2(k+1)h]

(

1
2h

x+h
∫

x−h

∣

∣

∣

∣

(1 − y)∑
n

yn ξ2

(ξ+h)2 f ∗ (ξ + h)− f ∗ (ξ)

∣

∣

∣

∣

p

dξ

)
1
p

q(x)

≥

(

1
2h

2kh+h
∫

2kh−h

∣

∣

∣

∣

(1 − y) ∑
n

yn ξ2

(ξ+h)2 f ∗ (ξ + h)− f ∗ (ξ)

∣

∣

∣

∣

p

dξ

) 1
p

q (2kh)

≥

(

1
2h

2kh+h
∫

2kh−h

∣

∣

∣

∣

(1 − y) ∑
n

yn ξ2

(ξ+h)2

{

− (ξ + h)2
}

− (ξ)2

∣

∣

∣

∣

p

dξ

)
1
p

1 + 4k2h2

=

(

1
2h

2kh+h
∫

2kh−h

∣

∣−2ξ2
∣

∣

p
dξ

) 1
p

1 + 4k2h2

>

(

1
2h 2p ((2k − 1) h)2p h

)
1
p

1 + 4k2h2

=
2

1− 1
p (2k − 1)2 h2

1 + 4k2h2
.
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On applying the operator lim
y→1−

on both sides one can see that

lim
y→1−

∥

∥

∥

∥

∥

(1 − y)∑
n

ynTj f ∗ − f ∗

∥

∥

∥

∥

∥

p,q

6= 0

Therefore the theorem is proved. This result shows that Korovkin type theorem
does not hold in the whole space Lp,q (loc) .

Now we show that the above mentioned problem has a positive solution in
the subspace Lk

p,q (loc) . First we give the following simple lemma.

Lemma 1. Let {Tn} be a sequence of positive linear operators from Lp,q (loc)
into itself such that (2.1) holds and satisfies

lim
y→1−

∥

∥Uy ( fi)− fi

∥

∥

p,q
= 0 for i = 0, 1, 2

where fi (t) = ti; i = 0, 1, 2. Then, for any continuous and bounded function f on
the real axis, we have

lim
y→1−

∥

∥Uy ( f )− f ; Lp,q (a, b)
∥

∥ = 0

where a and b are any real numbers.
Proof. Since f is uniformly continuous function on any closed interval, given ε > 0
there exists a positive δ = δ (ε) such that

| f (t)− f (x)| < ε if |t − x| < δ, where x ∈ [a, b], t ∈ R. (2.3)

Also, setting M = sup
x∈R

| f (x)|, we can write

| f (t)− f (x)| < 2M if |t − x| ≥ δ, where x ∈ [a, b], t ∈ R. (2.4)

Combining (2.3) and (2.4) we have

| f (t)− f (x)| < ε +
2M

δ2
(t − x)2 , (2.5)

where -∞ < t < ∞; x ∈ [a, b]. Let c := max {|a| , |b|} and using the positivity and
linearity of operators Tj and (2.5) we obtain
∥

∥Uy( f (t) ; x)− f (x) ; Lp,q (a, b)
∥

∥ ≤
∥

∥Uy(| f (t)− f (x)| ; x)
∥

∥

p,q

+ | f (x)|
∥

∥Uy(1; x)− 1
∥

∥

p,q

<

∥

∥

∥

∥

Uy(ε +
2M

δ2
(t − x)2 ; x)

∥

∥

∥

∥

p,q

+M
∥

∥Uy(1; x)− 1
∥

∥

p,q

< ε +
2M

δ2

∥

∥

∥
Uy(t

2; x)− x2
∥

∥

∥

p,q

+
4Mc

δ2

∥

∥Uy(t; x)− x
∥

∥

p,q

+

(

2Mc2

δ2
+ ε + M

)

∥

∥Uy(1; x)− 1
∥

∥

p,q
.
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Hence by the hypotheses the proof is completed.

Theorem 2. Let {Tn} be a sequence of positive linear operators from Lp,q (loc)
into itself such that (2.1) holds and satisfies

lim
y→1−

∥

∥Uy ( fi)− fi

∥

∥

p,q
= 0 for i = 0, 1, 2

where fi (t) = ti; i = 0, 1, 2. Then for any function f ∈ Lk
p,q (loc) we have

lim
y→1−

∥

∥Uy( f )− f
∥

∥

p,q
= 0.

Proof. We follow [8] up to a certain stage. If f ∈ Lk
p,q (loc) then

f − k f q ∈ L0
p,q (loc) . So it is sufficient to prove the theorem for the function

f ∈ L0
p,q (loc) . For any ε > 0, there exists a point x0 such that the inequality





1

2h

x+h
∫

x−h

| f (t)|p dt





1/p

< εq (x) (2.6)

holds for all x, |x| ≥ x0. By the well known Lusin Theorem, there exists a contin-
uous function ϕ on the finite interval [−x0 − h, x0 + h] such that the inequality

∥

∥ f − ϕ; Lp (−x0, x0)
∥

∥ < ε (2.7)

is fulfilled. Setting

0 < δ < min

{

2hεp

Mp (x0)
, h

}

, (2.8)

where M (x0) = max

{

max
|x|≤x0+h

|ϕ (x)| , 1

}

, we can define a continuous function g

by

g (x) =







ϕ (x) , i f |x| ≤ x0 + h
0 , i f |x| ≥ x0 + h + δ

linear , otherwise.

Then by (2.6) , (2.7) , (2.8) and the Minkowski inequality, we obtain

‖ f − g‖p,q < ε (2.9)

for any ε > 0 (see [8]).
Now we can find a point x1 > x0 such that

q (x1) >
M (x0)

ε
and g (x) = 0 for |x| > x1, (2.10)

where M (x0) is defined above. Then by (2.7), (2.8), (2.9) and the definition of g
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and Lemma 1 we get

∥

∥Uy ( f ; x)− f (x)
∥

∥

p,q
=

∥

∥Uy ( f (t)− g (t) + g (t) ; x)− f (x)− g (x) + g (x)
∥

∥

p,q

≤
∥

∥Uy ( f − g)
∥

∥

p,q
+
∥

∥Uyg − g
∥

∥

p,q
+ ‖ f − g‖p,q

≤ ε (1 − y)∑
n

yn ‖Tn‖p,q + ε +
∥

∥Uyg − g
∥

∥

p,q

≤ ε

(

(1 − y)∑
n

yn ‖Tn‖p,q + 1

)

+
∥

∥Uyg − g; Lp,q (−x1, x1)
∥

∥

+
∥

∥Uyg − g; Lp,q (|x| ≥ x1)
∥

∥

≤ ε

(

(1 − y)∑
n

yn ‖Tn‖p,q + 2

)

+
∥

∥Uyg; Lp,q (|x| ≥ x1)
∥

∥ . (2.11)

Since |g (x)| ≤ M (x0) for all x ∈ R, we can write

∥

∥Uyg; Lp,q (|x| ≥ x1)
∥

∥

p,q
≤ M (xo)

∥

∥Uy1; Lp,q (|x| ≥ x1)
∥

∥

≤ M (xo)
∥

∥Uy1 − 1; Lp,q (|x| ≥ x1)
∥

∥

+M (xo)
∥

∥1; Lp,q (|x| ≥ x1)
∥

∥

≤ M (xo)
∥

∥Uy1 − 1
∥

∥

p,q
+

M (xo)

q (x1)
.

Considering hypothesis and (2.10) we get by (2.11) that

lim
y→1−

∥

∥Uy f − f
∥

∥

p,q
= 0

which proves the theorem.
In the whole space Lp,q (loc) we have the following

Theorem 3. Let {Tn} be a sequence of positive linear operators from Lp,q (loc)
into itself such that (2.1) holds and satisfy

lim
y→1−

∥

∥Uy ( fi)− fi

∥

∥

p,q
= 0 for i = 0, 1, 2

where fi (t) = ti; i = 0, 1, 2. Then for any functions f ∈ Lp,q (loc) we have

lim
y→1−

(

sup
x∈R

∥

∥Uy f − f ; Lp (x − h, x + h)
∥

∥

p,q

q∗ (x)

)

= 0

where q∗ is a weight function such that lim
|x|→∞

1+x2

q∗(x)
= 0.

Proof. By hypothesis, given ε > 0, there exists x0 such that for all x with |x| ≥ x0

we have
1 + x2

q∗ (x)
< ε. (3.2)
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Let f ∈ Lp,q (loc) . Then we get

αy : =
∥

∥Uy f − f ; Lp (|x| > x0)
∥

∥

= sup
|x|>x0

(

1
2h

x+h
∫

x−h

∣

∣

∣

∣

(1 − y)∑
n

ynTn f − f

∣

∣

∣

∣

p

dt

)1/p

1 + x2

≤ sup
x∈R

(

1
2h

x+h
∫

x−h

∣

∣

∣

∣

(1 − y) ∑
n

ynTn f

∣

∣

∣

∣

p

dt

)1/p

1 + x2
+ sup

x∈R

(

1
2h

x+h
∫

x−h

| f |p dt

)1/p

1 + x2

≤

∥

∥

∥

∥

∥

(1 − y)∑
n

ynTn f

∥

∥

∥

∥

∥

p,q

+ ‖ f‖p,q

≤ (1 − y)∑
n

yn ‖Tn f‖p,q + ‖ f‖p,q

≤ ‖ f‖p,q

(

(1 − y)∑
n

yn ‖Tn‖p,q + 1

)

< N, say.

Hence we have αy is bounded. By Lusin’s theorem we can find a continuous
function ϕ on [−x0 − h, x0 + h] such that

∥

∥ f − ϕ; Lp (−x0 − h, x0 + h)
∥

∥ < ε. (3.3)

Now we consider the function G in [8] given by

G (x) :=







ϕ (−x0 − h) , x ≤ −x0 − h
ϕ (x0) , |x| < x0 + h

ϕ (x0 + h) , x ≥ x0 + h.

We see that G is continuous and bounded on the whole real axis. Now let
f ∈ Lp,q (loc) and we get that

βy : =
∥

∥Uy f − f ; Lp,q (−x0, x0)
∥

∥

=
∥

∥Uy ( f − G) ; Lp,q (−x0, x0)
∥

∥+
∥

∥UyG − G; Lp,q (−x0, x0)
∥

∥

+
∥

∥ f − G; Lp,q (−x0 − h, x0 + h)
∥

∥

≤ (1 − y)∑
n

yn ‖Tn‖p,q

∥

∥( f − G) ; Lp,q (−x0 − h, x0 + h)
∥

∥

+
∥

∥UyG − G; Lp,q (−x0, x0)
∥

∥+
∥

∥ f − G; Lp,q (−x0 − h, x0 + h)
∥

∥

≤
∥

∥ f − G; Lp,q (−x0 − h, x0 + h)
∥

∥

(

(1 − y)∑
n

yn ‖Tn‖p,q + 1

)

+
∥

∥UyG − G; Lp,q (−x0, x0)
∥

∥ .

Hence by the hypothesis and Lemma 1 we have

lim
y→1−

βy = 0. (3.4)



80 N. Şahin Bayram – C. Orhan

On the other hand, a simple calculation shows that

γy : =

∥

∥

∥

∥

∥

(1 − y)∑
n

ynTn f − f

∥

∥

∥

∥

∥

p,q∗

< sup
|x|<x0

(

1
2h

x+h
∫

x−h

∣

∣

∣

∣

(1 − y) ∑
n

ynTn f − f

∣

∣

∣

∣

p

dt

)1/p

q∗ (x)

q (x)

q (x)

+ sup
|x|≥x0

(

1
2h

x+h
∫

x−h

∣

∣

∣

∣

(1 − y) ∑
n

ynTn f − f

∣

∣

∣

∣

p

dt

)1/p

q∗ (x)

q (x)

q (x)

= βy sup
|x|<x0

q (x)

q∗ (x)
+ αy sup

|x|≥x0

q (x)

q∗ (x)

< βyq (x0) + εαy. (3.5)

It follows from (3.2), (3.3) , (3.4) , (3.5) and Lemma 1 that

γy < q (x0)
∥

∥ f − G; Lp,q (−x0 − h, x0 + h)
∥

∥

(

(1 − y)∑
n

yn ‖Tn‖p,q + 1

)

+q (x0)
∥

∥UyG − G; Lp,q (−x0, x0)
∥

∥+ εN

= Kε + q (x0)
∥

∥UyG − G; Lp,q (−x0, x0)
∥

∥

where K := Mq (x0) + N and M := H + 1. By Lemma 1 we get

lim
y→1−

(

sup
x∈R

∥

∥Uy f − f ; Lp (x − h, x + h)
∥

∥

p,q

q∗ (x)

)

= 0.

4 Rates of Abel convergence in Lp,q (loc)

In this section, using the modulus of continuity, we study rates of convergence in
Lp,q (loc).
We now turn to introducing some notation and basic definitions to obtain the rate
of convergence of the operators given in Theorem 3.
Also, we consider the following modulus of continuity:

w ( f , δ) = sup
|x−y|≤δ

| f (y)− f (x)| ,

where δ is a positive constant, f ∈ Lp,q (loc) and q (x) = 1 + x2. It is easy to see
that, for any c > 0 and all f ∈ Lp,q (loc) ,

w ( f , δ) ≤ (1 + [c]) w ( f , δ) ,

where [c] is defined to be the greatest integer less than or equal to c (see [6]) .
To obtain our main results we first need the following lemma.
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Lemma 2. Let {Tn} be a sequence of positive linear operators from Lp,q (loc) into
itself such that (2.1) holds.Then for each y ∈ (0, 1) and δ > 0, and for every
function f that is continuous and bounded on the whole real axis, we have

∥

∥Uy f − f ; Lp,q (a, b)
∥

∥ ≤ w ( f ; δ)
∥

∥Uy f0 − f0

∥

∥

p,q

+2w ( f ; δ) + C1

∥

∥Uy f0 − f0

∥

∥

p,q

where f0 (t) = 1, ϕx (t) := (t − x)2 , C1 = sup
a<x<b

| f (x)| and δ := α
(n)
k =

√

∥

∥Uyϕx

∥

∥

p,q
.

Proof. Let f be any continuous and bounded function on the real axis, and let
x ∈ [a, b] be fixed. Using linearity and monotonicity of Tn and for any δ > 0, by
modulus of continuity, we get

∣

∣Uy ( f ; x)− f (x)
∣

∣ ≤ Uy

(

w

(

f ,
|t − x|

δ
δ

)

, x

)

+ | f (x)|
∣

∣Uy ( f0; x)− f0 (x)
∣

∣

≤ w ( f , δ)
∣

∣Uy ( f0; x)− f0 (x)
∣

∣+ w ( f , δ)

+
w ( f , δ)

δ2

∣

∣Uyϕx

∣

∣+ | f (x)|
∣

∣Uy ( f0; x)− f0 (x)
∣

∣ .

Now let C1 = sup
a<x<b

| f (x)| and δ := α
(n)
k =

√

∥

∥Uyϕx

∥

∥

p,q
. Then we have

∥

∥Uy f − f ; Lp,q (a, b)
∥

∥ ≤ wq ( f , δ) sup
a<x<b

q (x)
∥

∥Uy ( f0; x)− f0 (x)
∥

∥

p,q
+ w ( f , δ)

+
w ( f , δ)

(
√

∥

∥Uyϕx

∥

∥

p,q

)2

∥

∥Uyϕx

∥

∥

p,q

+
∥

∥Uy ( f0; x)− f0 (x)
∥

∥

p,q
sup

a<x<b

| f (x)|

= w ( f , δ)
∥

∥Uy ( f0; x)− f0 (x)
∥

∥

p,q
+ 2w ( f , δ)

+C1

∥

∥Uy ( f0; x)− f0 (x)
∥

∥

p,q
.

Theorem 4. Let {Tn} be a sequence of positive linear operators from Lp,q (loc)
into itself such that (2.1) holds. Assume that for each y ∈ (0, 1) , δ > 0 and for
each continuous and bounded function f on the real line, the following conditions
hold:

(i) lim
y→1−

∥

∥Uy ( f0; x)− f0 (x)
∥

∥

p,q
= 0,

(ii) lim
y→1−

w ( f , δ) = 0.

Then we have
lim

y→1−

∥

∥Uy f − f ; Lp,q (a, b)
∥

∥ = 0.
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Proof. Using Lemma 2 and considering (i) and (ii) , we immediately get

lim
y→1−

∥

∥Uy f − f ; Lp,q (a, b)
∥

∥ = 0

for all continuous and bounded functions on the real axis.
Theorem 5. Let {Tn} be a sequence of positive linear operators from Lp,q (loc)
into itself such that (2.1) holds. Assume that

lim
y→1−

∥

∥Uy ( fi; x)− fi (x)
∥

∥

p,q
= 0

where fi (y) = yi for i = 0, 1, 2. If

(i) lim
y→1−

∥

∥Uy ( f0; x)− f0 (x)
∥

∥

p,q
= 0,

(ii) lim
y→1−

w (G, δ) = 0

where G is given in the proof of Theorem 3. Then, for f ∈ Lp,q (loc) , we have

lim
y→1−

(

sup
x∈R

∥

∥Uy f − f ; Lp (x − h, x + h)
∥

∥

q∗ (x)

)

= 0

where q∗ is a weight function such that lim
|x|→∞

1+x2

q∗(x)
= 0.

Proof. It is known from Theorem 3 that

u
(n)
k < q (x0)

∥

∥ f − G; Lp,q (−x0 − h, x0 + h)
∥

∥

(

(1 − y)∑
n

yn ‖Tn‖p,q + 1

)

+q (x0)
∥

∥UyG − G; Lp,q (−x0, x0)
∥

∥+ εN

= Kε + q (x0)
∥

∥UyG − G; Lp,q (−x0, x0)
∥

∥

where K := Mq (x0) + N and M := H + 1. Then by Lemma 2 and Theorem 4 we
get

u
(n)
k ≤ Kε + q (x0)w (G; δ)

∥

∥Uy ( f0; x)− f0 (x)
∥

∥

p,q
+ 2q (x0)w (G; δ)

+q (x0) C
′

1

∥

∥Uy ( f0; x)− f0 (x)
∥

∥

p,q

where C
′

1 := sup
−x0<x<x0

|G (x)| and the proof is completed.
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in the space of locally İntegrable functions, Czech. Math. J.,53 (128) (2003),
45-53.

[9] P. P. Korovkin, Linear Operators and The Theory of Approximation, India,
Delhi, (1960).

[10] R. E Powell and S. M. Shah, Summability Theory and Its Applications, Van
Nostrand Reinhold Company, London, (1972).
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