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Abstract

In this paper we prove the Helmholtz decomposition in conical domains
of R

3 in weighted L
p
β spaces under a spectral condition on β, p. The basic

elements are the transformation of the original problem into a problem set
in cylindrical domains and the combination of a priori bounds from [5] with
the vector-valued multiplier theorem [29].

1 Introduction

The Helmholtz decomposition, namely the decomposition of vector fields into a
solenoidal field and a gradient part, is an indispensable tool in the analysis of
incompressible fluid flows. While in the L2-setting such a decomposition is easily
obtained for any domains of R

d, d ≥ 2 using elementary Hilbert space properties
[20, Lemma 2.5.1], the situation becomes more delicate in the Lp-setting. Never-
theless, there are numerous results for bounded domains [3, 10, 12, 20] or exterior
domains (complement of a bounded domains) [17, 18, 28]; see also [6, 7, 23, 22]
for such results in weighted spaces. A common feature of such domains is that
they have a compact boundary. On the other hand there exist domains with non
compact boundary (sector-like) for which the Lp-Helmholtz decomposition fails
[1, 2, 16]. Nevertheless it is still valid for basic domains with a smooth boundary
like half-spaces or perturbations of them [11, 13, 27], aperture domains [4, 17, 6],
cylinders or layers [17, 21, 5, 19, 26, 25], or domains whose boundary is the graph
of smooth functions [2, 11]. But to the best of our knowledge, the question of
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the validity of the Lp-Helmholtz decomposition for domains with a non compact
and non-smooth boundary remains open. Nevertheless let us mention the paper
[15] that obtains a Helmholtz decomposition in anisotropic Lp spaces for domains
whose boundary is the graph of a globally Lipschitz functions (hence conical do-
mains are admitted).

The goal of this paper is therefore to prove such a Helmholtz decomposition
in conical domains of R

3 in weighted L
p
β spaces (Lp-spaces being a particular one

when β = 0) under a condition between α, p and the eigenvalues of the Laplace-
Beltrami operator with Neumann boundary conditions on the intersection of the
cone with the unit sphere. The basic tools are: First to transform the problem into
a problem set in cylindrical domains using the Euler change of variables, second
applying a formal Fourier transformation. In this way, we find a problem that is
a lower order perturbation of a problem considered in [5]. Finally, combining a
priori bounds from this paper with the vector-valued multiplier theorem [29], we
conclude the result. Note that this result can be derived via a duality argument,
we refer to [24] in this respect.

The paper is organized as follows. The second section deals with the weak
Neumann problem in the Fourier space, namely we study the resolvent of the
operator obtained after Euler change of variables and Fourier transform and show
its R-boundedness. In section 3, we show the well-posedness of the weak Neu-
mann problem in a cone and conclude with the Helmholtz decomposition.
Acknowledgement: We are grateful to Professor P. Deuring (Univ. Littoral) to
have pointed out the problem considered in this paper and for various discus-
sions about it.

2 The weak Neumann problem in the Fourier space

Let us fix an open subset S of the unit sphere of R
3 with a C1,1 boundary. On

such a domain, we want to consider a Neumann type problem with complex
parameters ξ on Lp(S) spaces. Hence as in [5], in order to have uniform estimates
in ξ and to use the vector-valued multiplier theorem [29], we enlarge the setting
to weighted Lp spaces.

Before let us fix some notations. Let us denote by (µk)k≥0, the sequence of
the eigenvalues (repeated according to their multiplicities) of the (non negative)
Laplace-Beltrami operator LNeu

LB on S with Neumann boundary conditions (obvi-
ously µ0 = 0 and µ1 > 0).

Let us further fix an atlas (Uℓ, Φℓ), ℓ = 1, · · · , L of S in the sense that for each
ℓ, Uℓ is a bounded open set of R

2 and

Φℓ : Uℓ → S

is an injective and C1 mapping such that

∪L
ℓ=1Φℓ(Uℓ) = S.

Now a non-negative function ω ∈ L1(S) is called an Ap-weight if and only

if ω ◦ Φℓ is the restriction to Uℓ of an Ap-weight of R
2. Finally we introduce the
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space L
p
ω(S) defined by

L
p
ω(S) := {u ∈ L1(S) : ‖u‖p,ω =

(∫

S
|u(ϑ)|pω(ϑ) dσ(ϑ)

) 1
p

< ∞}.

In the same manner, we define

L
p
T,ω(S) := {u ∈ L

p
ω(S)

3 : u(ϑ) · ϑ = 0 a.e. in S},

as well as
H1

p,ω(S) := {u ∈ L
p
ω(S) : ∇Tu ∈ L

p
T,ω(S)},

equipped with their natural norm. Here and below, ∇Tu means the tangential
gradient of u on S.

The main goal of this section is to study the next problem: given two real
parameters η, δ, and functions g ∈ L

p
T,ω(S) and g ∈ L

p
ω(S), we look for a solution

ψ ∈ H1
p,ω(S) to

∫

S

(
∇Tψ · ∇T ϕ − (iξ − η)(iξ + δ)ψϕ̄

)
dσ (2.1)

=
∫

S
(g(ϑ) · ∇T ϕ̄ − g(ϑ)(iξ + δ)ϕ̄) dσ, ∀ϕ ∈ H1

p′,ω′(S),

where p′ is the conjugate of p and ω′ = ω
− 1

p−1 .
The case when δ = −η with |η| < µ1 is treated in [5, Theorem 3.6] (since

Theorem 3.2 of [5] is valid by replacing ∆′ by the operator

∑
i,j

aij∂i∂j,

with constant coefficients aij = aji that is elliptic in the (usual) sense that the
matrix (aij)1≤i,j≤2 is positive definite). We here extend this result under one con-
dition on η, δ. Namely we have the next result.

Theorem 2.1. Assume that
ηδ 6= −µk, ∀k ∈ N. (2.2)

Then for all g ∈ L
p
T,ω(S) and g ∈ L

p
ω(S), there exists a unique solution ψ ∈ H1

p,ω(S) of
(2.1) with the estimate

‖∇ψ‖p,ω + (1 + |ξ|)‖ψ‖p,ω ≤ C(‖g‖p,ω + ‖g‖p,ω), (2.3)

with a positive constant C that may depend on the Ap-constant Ap(ω) but is indepen-
dent of ξ.

Proof. We first prove the existence and uniqueness of the solution. For that pur-
pose, we introduce the family of operators (compare with [5, p. 375])

Tp,ω(η, δ, ξ) : H1,0
p,ω(S) → (H1,0

p′,ω′(S))
∗ : ψ → Tp,ω(η, δ, ξ)ψ,

where

H1,0
p,ω(S) := {ψ ∈ H1,0

p,ω(S) :
∫

S
ψ dσ = 0},
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and

〈Tp,ω(η, δ, ξ)ψ, ϕ〉 =
∫

S

(
∇Tψ · ∇T ϕ − (iξ − η)(iξ + δ)ψϕ̄

)
dσ, ∀ϕ ∈ H1,0

p′,ω′(S).

The proof of Theorem 3.6 of [5] shows that Tp,ω(0, 0, ξ) is an isomorphism. Now
as

(Tp,ω(0, 0, ξ)− Tp,ω(η, δ, ξ))ψ = (ξ2 + (iξ − η)(iξ + δ))ψ,

and since by Proposition 2.5 of [5], H1
p,ω(S) is compactly embedded into L

p
ω(S),

we deduce that Tp,ω(0, 0, ξ) − Tp,ω(η, δ, ξ) is a compact operator. Therefore
Tp,ω(η, δ, ξ) is a Fredholm operator of index 0 and it will be an isomorphism if

and only if it is injective. So let ψ ∈ ker Tp,ω(η, δ, ξ) or equivalently ψ ∈ H1,0
p,ω(S)

satisfies
∫

S

(
∇Tψ · ∇T ϕ̄ − (iξ − η)(iξ + δ)ψϕ̄

)
dσ = 0, ∀ϕ ∈ H1,0

p′,ω′(S). (2.4)

But as ψ has zero mean value, we have

∫

S

(
∇Tψ · ∇T1 − (iξ − η)(iξ + δ)ψ1

)
dσ = −(iξ − η)(iξ + δ)

∫

S
ψ dσ = 0,

and therefore (2.4) extends to the whole H1
p′,ω′(S), namely

∫

S

(
∇Tψ · ∇T ϕ̄ − (iξ − η)(iξ + δ)ψϕ̄

)
dσ = 0, ∀ϕ ∈ H1

p′,ω′(S). (2.5)

But Lemma 2.2 of [8] guarantees that H1
p,ω(S) is continuously embedded into

W1,s(S) for some s > 1 and by the Sobolev embedding theorem, W1,s(S) being
continuously embedded into L2(S), we deduce that ψ ∈ L2(S).

Now for any h ∈ L2(S), as by our assumption (−iξ − η)(−iξ + δ) is never an
eigenvalue of LNeu

LB , there exists a unique solution ϕ ∈ H2(S) solution of

(
LNeu

LB − (−iξ − η)(−iξ + δ)
)

ϕ = h.

Since H2(S) is continuously embedded into W1,q(S) for all q > 1, by Lemma 2.4
of [5], H2(S) is continuously embedded into H1

p′,ω′(S). Consequently the above

identity implies that

∫

S

(
∇Tψ · ∇T ϕ̄ − (iξ − η)(iξ + δ)ψϕ̄

)
dσ =

∫

S
ψh̄ dσ.

Comparing with (2.5), we see that

∫

S
ψh̄ dσ = 0,

for any h ∈ L2(S) and we conclude that ψ = 0.
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At this stage it remains to show the estimate (2.3). Let us then fix g ∈ L
p
T,ω(S)

and g ∈ L
p
ω(S) and the unique solution ψ ∈ H1

p,ω(S) of (2.1). Then ψ can be
viewed as the solution of

∫

S

(
∇Tψ · ∇T ϕ + (ξ + iα)2ψϕ̄

)
dσ =

∫

S

(
(g(ϑ) · ∇T ϕ̄ − g(ϑ)(iξ + δ)ϕ̄)

+ (iξ(δ − η + α)− ηκ − α2)ψϕ̄
)

dσ, ∀ϕ ∈ H1
p′,ω′(S),

with a fixed α ∈ (0,
√

µ1), or equivalently

∫

S

(
∇Tψ · ∇T ϕ + (ξ + iα)2ψϕ̄

)
dσ =

∫

S
(g(ϑ) · ∇T ϕ̄ − i(ξ + iα)h(ϑ)ϕ̄) dσ, ∀ϕ ∈ H1

p′,ω′(S),

where h is given by

h(ϑ) = − iξ(δ − η + α)− ηκ − α2

iξ − α
ψ(ϑ) +

iξ + δ

iξ − α
g(ϑ).

Hence using Theorem 3.6 of [5] to this last problem, we find that

‖∇ψ‖p,ω + |ξ|‖ψ‖p,ω ≤ C(‖g‖p,ω + ‖h‖p,ω),

with a positive constant C that may depend on the Ap-constant Ap(ω) but is
independent of ξ. From the form of h, we find that

‖∇ψ‖p,ω + |ξ|‖ψ‖p,ω ≤ C(‖g‖p,ω + ‖g‖p,ω + ‖ψ‖p,ω),

since the ratios
iξ(δ−η+α)−ηκ−α2

iξ−α and iξ+δ
iξ−α are bounded for any ξ ∈ R. This proves

(2.3) for |ξ| large. For |ξ| small, the previous estimate (compare with the estimate
(3.11) of [5]) allows to use the arguments of the proof of Theorem 3.6 of [5] to
deduce that (2.3) is also valid (using our assumption (2.2)).

At this stage for a fixed pair of real numbers (δ, η) fulfilling (2.2), for any ξ ∈ R

and any (g, g) ∈ Xp,ω := L
p
T,ω(S)× L

p
ω(S), we set

Mδ,η(ξ)(g, g) = (∇Tψ, iξψ), (2.6)

where ψ ∈ H1
p,ω(S) is the unique solution of (2.1). According to Theorem 2.1, the

operator Mδ,η(ξ) is bounded from Xp,ω into itself. For T ∈ L(Xp,ω) denote by
|||T||| its operator norm. Then the previous Theorem mainly allows to obtain the
next result.

Corollary 2.2. Given p ∈ (1, ∞), fix a pair of real numbers (δ, η) fulfilling (2.2). Then
Mδ,η(ξ) is Fréchet differentiable with respect to ξ ∈ R and there exists an Ap-consistent
constant c (depending on (δ, η)) such that

|||Mδ,η(ξ)||| + |ξ||||M′
δ,η(ξ)||| ≤ c, ∀ξ ∈ R. (2.7)
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Proof. The estimate of |||Mδ,η(ξ)||| is nothing else than (2.3). But it is easy to

check that the Fréchet derivative ∂
∂ξMδ,η(ξ)(g, g) = (∇Tψ′, iξψ′) + (0, iψ), where

ψ ∈ H1
p,ω(S) is solution of (2.1) and ψ′ ∈ H1

p,ω(S) is solution of (compare with
(2.1))

∫

S

(
∇Tψ′ · ∇T ϕ − (iξ − η)(iξ + δ)ψ′ ϕ̄

)
dσ

= −i
∫

S
(g(ϑ) + (2iξ + δ − η)ψϕ̄) dσ, ∀ϕ ∈ H1

p′,ω′(S).

Hence applying Theorem 2.1 to this problem, we find that

‖∇ψ′‖p,ω + |ξ|‖ψ′‖p,ω ≤ C(‖ψ‖p,ω +
1

1 + |ξ| ‖g‖p,ω),

with a positive constant C that may depend on the Ap-constant Ap(ω) but is
independent of ξ. By the estimate (2.3) satisfied by ψ, we find that

‖∇ψ′‖p,ω + |ξ|‖ψ′‖p,ω ≤ C1

1 + |ξ| (‖g‖p,ω + ‖g‖p,ω),

with a positive constant C1 that may depend on the Ap-constant Ap(ω) but is
independent of ξ, which yields the requested on |||M′

δ,η(ξ)|||.

Remark 2.3. Notice that the statement of Corollary 2.2 remains valid for the op-

erator M̃δ,η(ξ) defined by

M̃δ,η(ξ)(g, g) = (∇Tψ, (1 + iξ)ψ),

for any ξ ∈ R and any (g, g) ∈ Xp,ω.

To end up our preliminary results, we need an extrapolation property on Xp,ω

and its consequence concerning R-boundedness, see Theorem 4.3 of [9] in L
p
ω(Ω)

or Theorem 4.3 of [5] in L
p
ω(Ω)n for an open set of R

n, n ∈ N
∗.

Theorem 2.4. Let 1 < p, s < ∞, ω ∈ Ap. Furthermore, let T be a family of L(Xp,ω)
that satisfies

‖TF‖s,ν ≤ C‖F‖s,ν , ∀T ∈ T , F ∈ Xp,ω ∩ Xs,ν, (2.8)

for every ν ∈ As with a constant C that depends only on the As-constant As(ν). Then T
is R-bounded on L(Xp,ω), in the sense that there exists C > 0 such that for any N ∈ N,
Tj ∈ T and Fj ∈ Xp,ω, it holds

‖
(

N

∑
j=1

|TjFj|2
) 1

2

‖p,ω ≤ C‖
(

N

∑
j=1

|Fj|2
) 1

2

‖p,ω.

Proof. First by using an atlas of S, we notice that the result is valid in L
p
ω(S)

4, con-
sequently it suffices to use an extension argument from Xp,ω to L

p
ω(S)

4. For that
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purpose, for T ∈ T , we introduce the operator T̃ as follows: for any
(g, g) ∈ L

p
ω(S)

4, we denote by

T̃(g, g) := T(g − (g · ϑ)ϑ, g).

Note that T̃ is well-defined since g − (g · ϑ)ϑ belongs to L
p
T,ω(S). Hence we find

a family T̃ = {T̃ : T ∈ T } of elements of L(L
p
ω(S)

4). Furthermore, by our
assumption (2.8), one has

‖T̃(g, g)‖s,ν ≤ C‖(g − (g · ϑ)ϑ, g)‖s,ν ,

with C > 0 from (2.8). As there exists a positive constant C1 depending only on s
and S (and that we may suppose to be ≥ 1) such that

‖g − (g · ϑ)ϑ‖s,ν ≤ C1‖g‖s,ν,

we deduce that
‖T̃(g, g)‖s,ν ≤ CC1‖(g, g)‖s,ν .

Hence T̃ satisfies the statement of the Theorem in L
p
ω(S)

4, hence it is R-bounded.
Let us now show that this property implies a similar property for T. Indeed,

taking any N ∈ N, Tj ∈ T and Fj ∈ Xp,ω, we notice that

TjFj = T̃jFj,

and therefore

‖
(

N

∑
j=1

|TjFj|2
) 1

2

‖p,ω = ‖
(

N

∑
j=1

|T̃jFj|2
) 1

2

‖p,ω

≤ C‖
(

N

∑
j=1

|Fj|2
) 1

2

‖p,ω,

for some C > 0 due to the R-boundedness of the family T̃ .

This Theorem and Corollary 2.2 directly imply the next result.

Theorem 2.5. Given p ∈ (1, ∞), fix a pair of real numbers (δ, η) fulfilling (2.2). Then
the sets {Mδ,η(ξ) : ξ ∈ R} and {ξM′

δ,η(ξ) : ξ ∈ R} are R-bounded on L(Xp,ω).
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3 The weak Neumann problem in a cone

In the whole section let Γ be a three-dimensional cone with a section S with a C1,1

boundary, in the sense that

Γ = {x ∈ R
3 : ϑ =

x

|x| ∈ S}.

On such domain, we recall that the weighted Sobolev space of Kondrat’ev’s

type V
k,p
β (Ω) with k ∈ N, p ∈ (1, ∞) and β ∈ R is defined by

V
k,p
β (Γ) = {u ∈ L2

loc(Γ) : ‖u‖
V

k,p
β (Γ)

< ∞},

where
‖u‖p

V
k,p
β (Γ)

= ∑|α|≤k
‖rβ+|α|−kDαu‖p

Lp(Γ)
,

r(x) = |x| being the distance from x to the origin, that is the corner point of Γ. In

particular, we write L
p
β(Γ) = V

0,p
β (Γ). Let us also recall that the singular functions

of the Laplace operator with Neumann boundary conditions are in the form

rλk± ϕk,

where ϕk is the eigenvector of LNeu
LB of eigenvalue µk and

λk± =
−1 ±

√
1 + 4µ2

k

2
. (3.1)

In this section, we prove the next result.

Theorem 3.1. Let p ∈ (1, ∞) and β ∈ R be such that

1 − 3

p
− β 6= λk±, ∀k ∈ N. (3.2)

Then for all f ∈ L
p
β(Γ)

3 there exists a unique solution u ∈ V
1,p
β (Γ) of

∫

Γ
∇u · ∇v̄ dx =

∫

Γ
f · ∇v̄ dx, ∀v ∈ V

1,q
−β(Γ), (3.3)

where q > 1 is the conjugate of p, i.e., 1
p + 1

q = 1. Furthermore there exists C > 0

(independent of u and f) such that

‖u‖
V

1,p
β (Γ)

≤ C‖f‖L
p
β(Γ)

3 , (3.4)

Proof. Assume that such a solution u exists. We perform the Euler change of

variables r = et that transform Γ into the strip B = R × S and for any v ∈ V
1,q
−β(Γ),

set
U(t, ϑ) = eηtu(et, ϑ), V(t, ϑ) = eδtv(et, ϑ),
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with η = −(1 − 3
p − β) and δ = 1 − η. By the arguments of [14, p. 193] (easily

extended to the Lp-setting), we deduce equivalently that U belongs to W1,p(B)
and satisfies
∫

B

(
∇TU · ∇TV + (∂tU − ηU)(∂tV̄ − δV̄)

)
dσ (3.5)

=
∫

B
(hT(t, ϑ) · ∇TV̄ + hr(t, ϑ)(∂tV̄ − δV̄)) dσ, ∀V ∈ W1,q(B),

where we have set

hr(t, ϑ) = e(2−δ)tf(et, ϑ) · ϑ, hT(t, ϑ) = e(2−δ)tf(et, ϑ)− hr(t, ϑ)ϑ,

which, respectively, belong to Lp(B) and L
p
T(B) := {h ∈ Lp(B)3 : h · ϑ = 0} with

‖hT‖L
p
T(B)

+ ‖hr‖Lp(B) ≤ C‖f‖L
p
β(Γ)

3 , (3.6)

for some positive constant C. Hence it suffices to show that (3.5) has a unique
solution U ∈ W1,p(B) for (hT, hr) ∈ L

p
T(B)× Lp(B).

Performing a formal Fourier transform F in t, we see that Û(ξ, ϑ) =
(Ft→ξU(·, ϑ))(ξ) satisfies

∫

S

(
∇TÛ · ∇T ϕ + (iξ − η)(−iξ − δ)Û ϕ̄

)
dσ =

∫

S

(
ĥT(ξ, ϑ) · ∇T ϕ̄ − ĥr(ξ, ϑ)(iξ + δ)ϕ̄

)
dσ,

for all suitable test-functions ϕ. Comparing with (2.1), we see that formally

(∇TÛ, iξÛ) = Mδ,η(ξ)(ĥT , ĥr). To be more correct, recalling the definition (2.6),
as our assumption (3.2) guarantees that the pair (δ, η), defined above, satisfies
(2.2), by Theorem 2.5, the sets {Mδ,η(ξ) : ξ ∈ R} and {ξM′

δ,η(ξ) : ξ ∈ R}
are R-bounded on Lp(S). Consequently by the vector-valued multiplier Theo-
rem (see [29, Theorem 3.4]), we deduce that F−1Mδ,η(·)F defines a bounded
linear operator on Lp(R; Xp,1) into itself. Consequently the vector-valued func-

tion (u, v) = (F−1Mδ,ηF )(hT , hr) belongs to Lp(R; L
p
T(S) × Lp(S)). By taking a

sequence of functions ϕn ∈ D(R, Xp,1) that converges to (hT, hr), using Corollary
2.2, Remark 2.3 and passing to the limit the next results can be obtained. There
exists U ∈ W1,p(B) such that

u = ∇TU, v = i∂tU,

with
‖U‖W1,p(B) ≤ C(‖hT‖L

p
T(B)

+ ‖hr‖Lp(B)),

for some C > 0. Furthermore it will satisfy (3.5) since D(R; W1,q(S)) is dense in
W1,q(B). Finally as

‖u‖
V

1,p
β (Γ)

≤ C‖U‖W1,p(B),

for some C > 0, with (3.6) we conclude that (3.4) holds.
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Corollary 3.2. Let p ∈ (1, ∞) and β ∈ R satisfy (3.2). Then any f ∈ L
p
β(Γ)

3 admits

the Helmholtz decomposition
f = f0 +∇u,

with f0 ∈ L
p
β(Γ)

3 divergence free and u ∈ V
1,p
β (Γ) such that

‖u‖
V

1,p
β (Γ)

+ ‖f0‖L
p
β(Γ)

3 ≤ C‖f‖L
p
β(Γ)

3, (3.7)

for some positive constant C independent of f.

Proof. Given f ∈ L
p
β(Γ)

3, the previous Theorem furnishes u ∈ V
1,p
β (Γ) solution of

(3.3) and we conclude by setting

f0 = f −∇u,

that is obviously divergence free by taking test-functions v ∈ D(Γ) in (3.3) and
satisfies (3.7) owing to (3.4).
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